It is well documented that service members are exposed to repeated low-level blast overpressure during training with heavy weapons such as artillery, mortars and explosive breaching. Often, acute symptoms associated with these exposures are transient but cumulative effect of low-level repeated blast exposures (RBEs) can include persistent deficits in cognitive and behavioral health. Thus far, reliable diagnostic biomarkers which can guide countermeasure strategies have not been identified. In this study, rats were exposed to multiple field-relevant blast waves with 8.5 and 10 psi peak positive overpressures, applying one exposure per day for 14 consecutive days. micro-RNAs that can potentially be used as biomarkers for RBEs were assessed in blood, brain, and cerebrospinal fluid (CSF). RBE caused a differential pattern of changes in various miRNAs in blood, brain and CSF in an overpressure-dependent manner. Our key outcomes were decrease of mir-6215 and let-7 family miRNAs and increase of mir-6321 and mir-222-5p in brain, blood, and CSF. Expression pattern of these miRNAs is in concurrence with various neurological conditions such as upregulation of mir-6321 in focal ischemic injury and downregulation of mir-6215 in nerve injury model. Contrarily, Let-7 family miRNAs have neuroprotective role and their downregulation suggests progression of blast induced traumatic brain injury (bTBI) with RBE at 14× -8.5 psi. Repeated blast caused alterations in miRNAs that are likely involved in vascular integrity, inflammation, and cell death. These results indicate that miRNAs are differentially dysregulated in response to blast injuries and may represent better prognostic and diagnostic biomarkers than traditional molecules to identify blast-specific brain injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/neu.2024.0269 | DOI Listing |
Int J Mol Sci
December 2024
McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
Military breachers are routinely exposed to repetitive low-level blast overpressure, placing them at elevated risk for long-term neurological sequelae. Mounting evidence suggests that circulating brain-reactive autoantibodies, generated following CNS injury, may serve as both biomarkers of cumulative damage and drivers of secondary neuroinflammation. In this study, we compared circulating autoantibody profiles in military breachers ( = 18) with extensive blast exposure against unexposed military controls ( = 19).
View Article and Find Full Text PDFSci Rep
January 2025
School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan, 232001, Anhui, China.
To investigate the changes in the strength and deformation of the blast load-damaged sandstone roof plate under cyclic loading and unloading conditions at different confining pressures, a triaxial loading device was used to carry out graded cyclic unloading tests on specimens with different degrees of damage, and the test results were summarized. The effects of blast-load-induced damage, confining pressure and loading stage on the strength, cohesion, internal friction angle, residual strain and volumetric strain were analyzed. (1) Compared with that of the undamaged specimen at a confining pressure of 0 MPa, the peak stress reductions in the vibration-damaged and blast-damaged specimens were 4.
View Article and Find Full Text PDFNeurotrauma Rep
December 2024
Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
Plant Dis
December 2024
Chiang Mai University, Biology, Room 2410/00, SCB2 building, Faculty of Science, Chiang Mai University,239 Huay Kaew Road, Suthep, Muang, Chiang Mai Province, Thailand, 50200;
Peacock plant (Calathea orbifolia (Linden) H.A.Kenn.
View Article and Find Full Text PDFJ Vis Exp
December 2024
CFD Research Corporation;
Military personnel involved in weapon training are subjected to repeated low-level blasts. The prevailing method of estimating blast loads involves wearable blast gauges. However, using wearable sensor data, blast loads to the head or other organs cannot be accurately estimated without knowledge of the service member's body posture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!