A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Region-independent active CNS net uptake of marketed H/OC antiporter system substrates. | LitMetric

Region-independent active CNS net uptake of marketed H/OC antiporter system substrates.

Front Cell Neurosci

Department of Pharmacy, Faculty of Pharmacy, Translational Pharmacokinetics-Pharmacodynamics Group, Translational Pharmacokinetics Pharmacodynamics (tPKPD), Uppsala University, Uppsala, Sweden.

Published: October 2024

The pyrilamine-sensitive proton-coupled organic cation (H/OC) antiporter system facilitates the active net uptake of several marketed organic cationic drugs across the blood-brain barrier (BBB). This rare phenomenon has garnered interest in the H/OC antiporter system as a potential target for CNS drug delivery. However, analysis of pharmacovigilance data has uncovered a significant association between substrates of the H/OC antiporter and neurotoxicity, particularly drug-induced seizures (DIS) and mood- and cognitive-related adverse events (MCAEs). This preclinical study aimed to elucidate the CNS regional disposition of H/OC antiporter substrates at therapeutically relevant plasma concentrations to uncover potential pharmacokinetic mechanisms underlying DIS and MCAEs. Here, we investigated the neuropharmacokinetics of pyrilamine, diphenhydramine, bupropion, tramadol, oxycodone, and memantine. Using the Combinatory Mapping Approach for Regions of Interest (CMA-ROI), we characterized the transport of unbound drugs across the BBB in specific CNS regions, as well as the blood-spinal cord barrier (BSCB) and the blood-cerebrospinal fluid barrier (BCSFB). Our findings demonstrated active net uptake across the BBB and BSCB, with unbound ROI-to-plasma concentration ratio, K, values consistently exceeding unity in all assessed regions. Despite minor regional differences, no significant distinctions were found when comparing the whole brain to investigated regions of interest, indicating region-independent active transport. Furthermore, we observed intracellular accumulation via lysosomal trapping for all studied drugs. These results provide new insights into the CNS regional neuropharmacokinetics of these drugs, suggesting that while the brain uptake is region-independent, the active transport mechanism enables high extracellular and intracellular drug concentrations, potentially contributing to neurotoxicity. This finding emphasizes the necessity of thorough neuropharmacokinetic evaluation and neurotoxicity profiling in the development of drugs that utilize this transport pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554538PMC
http://dx.doi.org/10.3389/fncel.2024.1493644DOI Listing

Publication Analysis

Top Keywords

h/oc antiporter
20
region-independent active
12
net uptake
12
antiporter system
12
uptake marketed
8
active net
8
cns regional
8
regions interest
8
active transport
8
cns
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!