Using point-source atom interferometry (PSI), we characterize the sensitivity of a multiaxis gyroscope based on free-space Raman interrogation of a single source of cold atoms in a glass vacuum cell. The instrument simultaneously measures the acceleration in the direction of the Raman-laser beams and the projection of the rotation vector onto the plane perpendicular to that direction. The sensitivities for the magnitude and direction of the rotation-vector measurement are 0.033°/s and 0.27° with an averaging time of 1 s, respectively. The fractional acceleration sensitivity is . The sensitivity can be increased by increasing the Raman interrogation time, allowing the cold-atom cloud to expand further, correcting the fluctuations in the initial cloud shape, and reducing sources of technical noise. PSI resolves a rotation vector in a plane by measuring a phase gradient. This two-dimensional rotation sensitivity may be specifically important for applications such as tracking the precession of a rotation vector and gyrocompassing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555935PMC
http://dx.doi.org/10.1103/physrevapplied.12.014019DOI Listing

Publication Analysis

Top Keywords

rotation vector
12
raman interrogation
8
vector plane
8
single-source multiaxis
4
multiaxis cold-atom
4
cold-atom interferometer
4
interferometer centimeter-scale
4
centimeter-scale cell
4
cell point-source
4
point-source atom
4

Similar Publications

Background: Medical Humanities (MH) curricula integrate humanities disciplines into medical education to nurture essential qualities in future physicians. However, the impact of MH on clinical competencies during formative training phases remains underexplored. This study aimed to determine the influence of MH curricula on internship performance.

View Article and Find Full Text PDF

Objective: To develop an original-mirror alignment associated deep learning algorithm for intelligent registration of three-dimensional maxillofacial point cloud data, by utilizing a dynamic graph-based registration network model (maxillofacial dynamic graph registration network, MDGR-Net), and to provide a valuable reference for digital design and analysis in clinical dental applications.

Methods: Four hundred clinical patients without significant deformities were recruited from Peking University School of Stomatology from October 2018 to October 2022. Through data augmentation, a total of 2 000 three-dimensional maxillofacial datasets were generated for training and testing the MDGR-Net algorithm.

View Article and Find Full Text PDF

Miniaturized inertial sensor based on high-resolution dual atom interferometry.

Rev Sci Instrum

January 2025

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.

Atom interferometry shows high sensitivity for inertial measurements in the laboratory, but it faces difficulties in field applications because of a trade-off between sensitivity and size. Therefore, there is an urgent need to develop a small sensor with high resolution for measuring acceleration and rotation in inertial navigation applications. Presented here is a miniaturized inertial sensor capable of measuring acceleration and rotation simultaneously based on high-resolution dual atom interferometers.

View Article and Find Full Text PDF

Imaging the entire cardiomyocyte network in entire small animal hearts at single cell resolution is a formidable challenge. Optical microscopy provides sufficient contrast and resolution in 2d, however fails to deliver non-destructive 3d reconstructions with isotropic resolution. It requires several invasive preparation steps, which introduce structural artefacts, namely dehydration, physical slicing and staining, or for the case of light sheet microscopy also clearing of the tissue.

View Article and Find Full Text PDF

Background: Gait instability and falls significantly impact life quality and morbi-mortality in elderly populations. Early diagnosis of gait disorders is one of the most effective approaches to minimize severe injuries.

Objective: To find a gait instability pattern in older adults through an image representation of data collected by a single sensor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!