A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predictive dynamic control accurately maps the design space for 2,3-butanediol production. | LitMetric

2,3-Butanediol is a valuable raw material for many industries. Compared to its classical production from petroleum, novel fermentation-based manufacturing is an ecologically superior alternative. To be also economically feasible, the production bioprocesses need to be well optimized. Here, we adapted and applied a novel process optimization algorithm, dynamic control flux-balance analysis (dcFBA), for 2,3-butanediol production in . First, we performed two-stage fed-batch process simulations with varying process lengths. There, we found that the solution space can be separated into a proportionality and a trade-off region. With the information of the simulations we were able to design close-to-optimal production processes for maximizing titer and productivity, respectively. Experimental validations resulted in a titer of Image 1 and a productivity of Image 2. Subsequently, we optimized a continuous two-reactor process setup for 2,3-butanediol productivity. We found that in this mode, it is possible to increase the productivity more than threefold with minor impact on the titer and yield. Biotechnological process optimization is cumbersome, therefore, many processes are run in suboptimal conditions. We are confident that the method presented here, will help to make many biotechnological productions economically feasible in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554925PMC
http://dx.doi.org/10.1016/j.csbj.2024.10.016DOI Listing

Publication Analysis

Top Keywords

dynamic control
8
23-butanediol production
8
economically feasible
8
process optimization
8
production
5
process
5
predictive dynamic
4
control accurately
4
accurately maps
4
maps design
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!