Type 2 inflammation in COPD: is it just asthma?

Breathe (Sheff)

Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK.

Published: October 2024

COPD is a heterogeneous condition, with tobacco smoking being the main environmental risk factor. The presence of type 2 (T2) inflammation is a well-recognised feature of asthma; however, it is now apparent that a subset of COPD patients also displays evidence of T2 inflammation with respect to elevated eosinophil counts and altered gene and protein expression of several T2 inflammatory mediators. T2 inflammatory mediators represent an attractive therapeutic target in both COPD and asthma; however, the efficacy of pharmaceutical interventions varies between diseases. Furthermore, the nature of some shared clinical features also differs. We provide a narrative review of differences in the nature of T2 inflammation between COPD and asthma, which may partly explain phenotypic differences between diseases. We focus on evidence from studies of pulmonary histopathology, sputum and epithelial gene and protein expression, and response to pharmacological interventions targeted at T2 inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555586PMC
http://dx.doi.org/10.1183/20734735.0229-2023DOI Listing

Publication Analysis

Top Keywords

type inflammation
8
inflammation copd
8
gene protein
8
protein expression
8
inflammatory mediators
8
copd asthma
8
copd
5
copd asthma?
4
asthma? copd
4
copd heterogeneous
4

Similar Publications

Iron regulatory protein 2 (IRP2), a post-transcriptional regulator of cellular iron metabolism has been associated with susceptibility to chronic obstructive pulmonary disease (COPD). Resistive breathing (RB) is the hallmark of the pathophysiology of obstructive airway diseases, especially during exacerbations, where increased mechanical stress is imposed on the lung. We have previously shown that RB, through tracheal banding, mimicking severe airway obstruction, induces pulmonary inflammation and injury in previously healthy mice.

View Article and Find Full Text PDF

USP5 inhibits anti-RNA viral innate immunity by deconjugating K48-linked unanchored and K63-linked anchored ubiquitin on IRF3.

PLoS Pathog

January 2025

National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.

Interferon regulatory factor 3 (IRF3) is a central hub transcription factor that controls host antiviral innate immunity. The expression and function of IRF3 are tightly regulated by the post-translational modifications. However, it is unknown whether unanchored ubiquitination and deubiquitination of IRF3 involve modulating antiviral innate immunity against RNA viruses.

View Article and Find Full Text PDF

Aim: To compare the respective clinical and pathologic features of antimitochondrial antibodies-negative (AMA-negative) primary biliary cirrhosis (PBC) and cholestatic type drug-induced liver injury (DILI) for clinical differential diagnosis.

Patients And Methods: Clinical data from 23 patients with AMA-negative PBC and 39 patients with cholestatic type DILI, treated at our hospital between January 2013 and January 2024, were collected and retrospectively analyzed.

Results: The cholestatic type DILI group exhibited a higher incidence of malaise and abdominal pain compared with the AMA-negative PBC group.

View Article and Find Full Text PDF

Effect of tumor microenvironment in pancreatic cancer on the loss of β-cell mass: implications for type 3c diabetes.

J Gastroenterol

January 2025

Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.

Background: To explore the complex interactions between the tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) and the loss of β-cell mass, further elucidating the mechanisms of type 3c diabetes mellitus (T3cDM) onset.

Methods: Single-cell RNA sequencing was employed to analyze the PDAC TME, identifying cell interactions and gene expression changes of endocrine cells. Pathological changes and paraneoplastic islets were assessed in the proximal paratumor (PP) and distal paratumor (DP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!