Objective: Cerebrospinal fluid biomarkers are challenging to use for diagnosing mild cognitive impairment (MCI) in large populations, and there is an urgent need for new blood biomarkers. The aim of this study is to investigate whether astrocyte activation is correlated with hippocampal atrophy, and to assess the potential of glial fibrillary acidic protein (GFAP) as a biomarker for diagnosing MCI among community-dwelling older individuals.
Methods: This cross-sectional study included 107 older adults. The levels of GFAP in serum were measured, and the volumetric assessment of gray matter within hippocampal subregions was conducted using Voxel-Based Morphometry (VBM). The relationship between hippocampal subregion volume and blood biomarkers were analyzed using partial correlation. The effectiveness of blood biomarkers in differentiating MCI was assessed using a receiver operating characteristic (ROC) curve.
Results: We found that serum GFAP levels were significantly elevated in the MCI group compared to the cognitively normal (CN) group. Additionally, individuals with MCI exhibited a reduction gray matter volume in specific hippocampal subregions. Notably, the right dentate gyrus (DG) and right cornu ammonis (CA) subregions were found to be effective for distinguishing MCI patients from CN individuals. Serum levels of GFAP demonstrate a sensitivity of 65.9% and a specificity of 75.6% in differentiating patients with MCI from CN individuals.
Conclusion: Specific atrophy within hippocampal subregions has been observed in the brains of community-dwelling elderly individuals. Elevated levels of circulating GFAP may serve as a sensitive peripheral biomarker indicative of hippocampal-specific cognitive alterations in patients with MCI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554497 | PMC |
http://dx.doi.org/10.3389/fnagi.2024.1461556 | DOI Listing |
Nat Commun
January 2025
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
Identifying cell types and brain regions critical for psychiatric disorders and brain traits is essential for targeted neurobiological research. By integrating genomic insights from genome-wide association studies with a comprehensive single-cell transcriptomic atlas of the adult human brain, we prioritized specific neuronal clusters significantly enriched for the SNP-heritabilities for schizophrenia, bipolar disorder, and major depressive disorder along with intelligence, education, and neuroticism. Extrapolation of cell-type results to brain regions reveals the whole-brain impact of schizophrenia genetic risk, with subregions in the hippocampus and amygdala exhibiting the most significant enrichment of SNP-heritability.
View Article and Find Full Text PDFJ Neurosci Methods
January 2025
Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. Electronic address:
Background: The hippocampus plays a crucial role in memory and is one of the first structures affected by Alzheimer's disease. Postmortem MRI offers a way to quantify the alterations by measuring the atrophy of the inner structures of the hippocampus. Unfortunately, the manual segmentation of hippocampal subregions required to carry out these measures is very time-consuming.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan; Division of Sport Neuroscience, Kokoro Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan. Electronic address:
Exercise benefits the brain, particularly the learning and memory center-the dorsal hippocampus (dHPC)-and holds promise for therapeutic applications addressing age-related cognitive deficits. While moderate-to-vigorous-intensity exercise is commonly recommended for health benefits, our translational research proposes the effectiveness of very-light-intensity exercise in enhancing cognitive functions. However, the intensity-dependent characteristics of HPC activation have yet to be fully delineated; therefore, there is no evidence of whether such easily accessible exercises for people of all ages and most fitness levels can activate HPC neurons.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Michigan, Ann Arbor, MI, USA.
Background: Inhibitory interneurons normally regulate neural networks underlying memory and cognition, but are disrupted in Alzheimer's disease. Proper interneuron activity reduces amyloid-beta, whereas hyperexcitability elevates amyloid levels. Still, the underlying pathologic processes mediating interneuron dysfunction remain unknown.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Southern Illinois University School of Medicine, Springfield, IL, USA.
Background: Glutamatergic neurotransmission plays an essential role in learning and memory. Previous studies support a dynamic shift in excitatory signaling with Alzheimer's disease (AD) progression, contributing to negative cognitive outcomes. The majority of previous studies have relied heavily on male physiology when determining these alterations in AD mouse models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!