A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Saline-alkali stress affects the accumulation of proanthocyanidins and sesquiterpenoids via the MYB5-ANR/TPS31 cascades in the rose petals. | LitMetric

Rose () petals are rich in diverse secondary metabolites, which have important physiological functions as well as great economic values. Currently, it remains unclear how saline and/or alkaline stress(es) influence the accumulation of secondary metabolites in rose. In this study, we analyzed the transcriptome and metabolite profiles of rose petals under aline-alkali stress and uncovered the induction mechanism underlying major metabolites. Dramatic changes were observed in the expression of 1363 genes and the abundances of 196 metabolites in petals in response to saline-alkali stress. These differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) are mainly associated with flavonoid and terpenoid metabolism and the reconstruction of cell walls. Of them, () overexpression in tobacco leaves driven by its own promoter resulted in significant alterations in the levels of diverse terpenoids, which were differentially influenced by saline-alkali stress. An integrated analysis of metabolomic and transcriptomic data revealed a high correlation between the abundances of flavonoids/terpenoids and the expression of the transcription factor MYB5. MYB5 may orchestrate the biosynthesis of sesquiterpenoids and proanthocyanidins through direct regulation of and expression under aline-alkali stress. Our finding facilitates improving the bioactive substance accumulation of rose petals by metabolic engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554761PMC
http://dx.doi.org/10.1093/hr/uhae243DOI Listing

Publication Analysis

Top Keywords

rose petals
16
saline-alkali stress
12
secondary metabolites
8
aline-alkali stress
8
rose
5
petals
5
metabolites
5
stress accumulation
4
accumulation proanthocyanidins
4
proanthocyanidins sesquiterpenoids
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!