Regular occurrences of oil leaks are recognized as a significant contributor to water pollution, resulting in substantial environmental and ecological challenges, as well as posing potential for fires and explosions. Therefore, it is imperative to create a cost-effective and exceptionally effective absorbent material for separating oil and water. Hydrophobic, foam-like materials have garnered considerable attention as potential absorbers for addressing oil spills and recovering oil from water sources. In this experimental study, simple, low-cost, environmentally friendly, highly hydrophobic, and super oleophilic g-CN/BiS nanocomposite-coated melamine foam was introduced for oily wastewater treatment. The g-CN and BiS were synthesized by thermal decomposition and hydrothermal methods, and the g-CN/BiS composite-coated foam was prepared by a simple dip-coated method. The g-CN/BiS composite-coated melamine foam shows excellent absorption capacity, and it can absorb various oils and solvents and separate different oils and solvents from water. Hence, the developed g-CN/BiS foam absorbent has excellent potential in oil/water separation applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555491PMC
http://dx.doi.org/10.1039/d4ra07030eDOI Listing

Publication Analysis

Top Keywords

melamine foam
12
oil/water separation
8
separation applications
8
oil water
8
g-cn/bis composite-coated
8
oils solvents
8
g-cn/bis
5
foam
5
facile fabrication
4
fabrication g-cn/bis
4

Similar Publications

Polydopamine/Melamine Sponge-Derived Compressible Carbon Foam for High-Performance Supercapacitors.

Langmuir

January 2025

Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China.

Electrode materials with a deformation capability are vital to the development of flexible supercapacitors. However, the preparation of porous carbons with a deformability remains challenging. Herein, a compressible carbon foam has been successfully prepared using a polydopamine/melamine sponge (PDA/MS) as the precursor material.

View Article and Find Full Text PDF

Ceramic aerogels are promising high-temperature thermal insulation materials due to their outstanding thermal stability and oxidation resistance. However, restricted by nanoparticle-assembled network structures, conventional ceramic aerogels commonly suffer from inherent brittleness, volume shrinkage, and structural collapse at high temperatures. Here, to overcome such obstacles, 3D ultralight and highly porous carbon tube foams (CTFs) were designed and synthesized as the carbonaceous precursors, where melamine foams were used as the sacrificial templates to form the hollow and thin-wall network structures in the CTFs (density: ∼4.

View Article and Find Full Text PDF

Bionic Luminescent Sensors Based on Covalent Organic Frameworks: Auditory, Gustatory, and Olfactory Information Monitoring for Multimode Perception.

ACS Nano

January 2025

Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.

The synthesis of covalent organic frameworks (COFs) with excellent luminescent properties and their effective application in the field of bionic sensing remain a formidable challenge. Herein, a series of COFs with different numbers of hydroxyl groups are successfully synthesized, and the number of hydroxyl groups on the benzene-1,3,5-tricarbaldehyde (BTA) linker influences the properties of the final COFs. The COF (HHBTA-OH) prepared with hydrazine hydrate (HH) and BTA containing one hydroxyl group as the ligands exhibits the best fluorescent performance.

View Article and Find Full Text PDF

The main purpose of this study is to prepare a melamine aniline formaldehyde foam, an MAF copolymer, with lower water sensitivity and non-flammability properties obtained by the condensation reaction of melamine, aniline, and formaldehyde. In addition, the preparation of MAFF composites with organoclay reinforcement was determined as a secondary target in order to obtain better mechanical strength, heat, and sound insulation properties. For the synthesis of foams, the microwave irradiation technique, which offers advantages such as faster reactions, high yields and purities, and reduced curing times, was used together with the heating technique and the effect of organoclay content on the structural and textural properties of foams and both heat insulation and mechanical stability was investigated.

View Article and Find Full Text PDF

Hierarchically Porous Polypyrrole Foams Contained Ordered Polypyrrole Nanowire Arrays for Multifunctional Electromagnetic Interference Shielding and Dynamic Infrared Stealth.

Nanomicro Lett

December 2024

School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.

As modern communication and detection technologies advance at a swift pace, multifunctional electromagnetic interference (EMI) shielding materials with active/positive infrared stealth, hydrophobicity, and electric-thermal conversion ability have received extensive attention. Meeting the aforesaid requirements simultaneously remains a huge challenge. In this research, the melamine foam (MF)/polypyrrole (PPy) nanowire arrays (MF@PPy) were fabricated via one-step electrochemical polymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!