Similar Publications

Harnessing Imine Chemistry for the Debonding-on-Demand of Polyurethane Adhesives.

ACS Appl Mater Interfaces

December 2024

Polymer Performance Materials Group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

Traditional adhesives often result in irreversible bonds, hindering disassembly and recycling processes. In response to the growing demand for sustainable practices, researchers have explored alternative bonding solutions. Debonding-on-demand adhesives represent a breakthrough, enabling selective weakening or breaking of adhesive bonds when desired and facilitating efficient disassembly, repair, and recycling of bonded materials.

View Article and Find Full Text PDF

Polyurethane (PU)-based electrolyte has become one of the most important research directions because of its unique repeating 'soft-hard' segment co-polymer structure. Its 'soft segment' composition includes polyethylene oxide, polysiloxane, polycarbonate, cellulose and polyether. Among them, polyether-based polyurethane electrolytes (PPES) have the advantages of simple synthesis, molecular structure optimization and functional group modification, which can greatly improve the ionic conductivity of the system and form a good ion transport interface.

View Article and Find Full Text PDF

Design of 3D-Photoprintable, Bio-, and Hemocompatible Nonisocyanate Polyurethane Elastomers for Biomedical Implants.

Biomacromolecules

March 2024

Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, Building B6a, 4000 Liège, Belgium.

Polyurethanes (PUs) have adjustable mechanical properties, making them suitable for a wide range of applications, including in the biomedical field. Historically, these PUs have been synthesized from isocyanates, which are toxic compounds to handle. This has encouraged the search for safer and more environmentally friendly synthetic routes, leading today to the production of nonisocyanate polyurethanes (NIPUs).

View Article and Find Full Text PDF

Selective Electrocatalytic Degradation of Ether-Containing Polymers.

Angew Chem Int Ed Engl

January 2024

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA.

Leveraging electrochemistry to degrade robust polymeric materials has the potential to impact society's growing issue of plastic waste. Herein, we develop an electrocatalytic oxidative degradation of polyethers and poly(vinyl ethers) via electrochemically mediated hydrogen atom transfer (HAT) followed by oxidative polymer degradation promoted by molecular oxygen. We investigated the selectivity and efficiency of this method, finding our conditions to be highly selective for polymers with hydridic, electron-rich C-H bonds.

View Article and Find Full Text PDF

A series of non-isocyanate poly(ether urethane) (PEU) were prepared by an environmentally friendly route based on dimethyl carbonate, diols and a polyether. The effect of the chemical structure of polyurethane hard segments on the properties of this kind of PEU was systematically investigated in this work. Polyurethane hard segments with different structures were first prepared from hexamethylene di-carbamate (BHC) and different diols (butanediol, hexanediol, octanediol and decanediol).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!