Background: Sperm capacitation is a prerequisite for natural or in vitro fertilization. After capacitation, sperm become hyperactivated and undergo an acrosome reaction, which helps them penetrate the oocyte. Cordycepin, a bioactive compound first isolated from Cordyceps militaris, is an adenosine analog with numerous physiological activities. However, its effects on sperm capacitation remain unclear. This study aims to elucidate the effects and mechanisms of cordycepin on human sperm capacitation.
Methods: During in vitro capacitation culture, healthy human sperm were treated with cordycepin (20, 100, 500 µM). Sperm motility and hyperactivation were detected using a computer-assisted sperm analyzer. Sperm acrosome reaction was measured using fluorescein isothiocyanate-conjugated Pisum sativum agglutinin. Sperm protein kinase A (PKA) activity was analyzed using an ELISA kit. The levels of sperm protein tyrosine phosphorylation were detected by western blotting. Sperm DNA damage was detected by a sperm chromatin dispersion assay. Reactive oxygen species (ROS) were measured using the fluorescence probe 2',7'-dichlorodihydrofluorescein diacetate. The expression and localization of adenosine receptors were analyzed by western blotting and immunofluorescence. The specific inhibitors of adenosine receptors were used to confirm their effects on cordycepin-induced sperm capacitation. Finally, molecular docking was performed to analyze the interaction between cordycepin and adenosine receptors.
Results: Cordycepin improved hyperactivated sperm motility, acrosome reaction, PKA activity, and protein tyrosine phosphorylation during capacitation while having no obvious effects on sperm ROS or DNA damage. Four adenosine receptor subtypes were expressed in human sperm, but their localizations differed. Inhibition of adenosine receptors significantly decreased cordycepin-induced sperm hyperactivation and the acrosome reaction. Molecular docking showed that cordycepin can bind to the four subtypes of adenosine receptors.
Conclusion: Cordycepin may promote human sperm capacitation through adenosine receptor-mediated signaling pathways. These findings may be useful for assisted reproductive technology and animal breeding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555834 | PMC |
http://dx.doi.org/10.1186/s12958-024-01318-3 | DOI Listing |
Reprod Domest Anim
December 2024
Animal Reproduction, Gynaecology and Obstetrics, Artificial Breeding Research Centre (ABRC), ICAR-National Dairy Research Institute, Karnal, Haryana, India.
Bull fertility is a multi-factorial trait and is affected by many factors, such as nutrition, genetics, and epigenetics. Superior quality male germplasm with high genetic merit helps to improve the livestock production trait. To achieve the target of livestock production, the availability of superior male germplasm is a great concern.
View Article and Find Full Text PDFEur J Cell Biol
December 2024
INRAE, CNRS, University of Tours, Physiologie de la Reproduction et des comportements, Center INRAE Val-de-Loire, Nouzilly, France. Electronic address:
After insemination, a subpopulation of sperm reaches the oviducts and binds to isthmic epithelial cells to form a "sperm reservoir". Our objective was to explore the role of annexin A5 (ANXA5), a protein that binds with high affinity to phosphatidylserine (PS), in the formation of the sperm reservoir in pigs. Phosphatidylserine was detected on the head of approximately 10 % of boar sperm at ejaculation.
View Article and Find Full Text PDFHum Reprod
December 2024
Experimental Medicine Division, Department of Medicine, McGill University, Montréal, QC, Canada.
Study Question: What role do sphingolipids have in mediating human sperm capacitation?
Summary Answer: Sphingosine 1-phosphate (S1P) mediates the acquisition of fertilizing competency in human spermatozoa by engaging with its Gi-coupled receptor S1PR1 and promoting production of reactive oxygen species such as nitric oxide and superoxide anion.
What Is Known Already: Bioactive sphingolipids, such as S1P, are fundamental for regulating numerous physiological domains and processes, such as cell membranes and signalling, cell death and proliferation, cell migration and invasiveness, inflammation, and central nervous system development.
Study Design, Size, Duration: Semen samples were obtained from a cohort of 10 healthy non-smoking volunteers (18-30 years old) to investigate the role of S1P in sperm.
Int J Toxicol
December 2024
School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China.
The presence of polystyrene plastics in the human testis has raised concerns, yet their biological activity remains poorly characterized. This study aimed to investigate the biological effects and potential regulatory genes of polystyrene nanoplastics on spermatocyte line, GC-2spd(ts). After a 24-h exposure to polystyrene nanoplastics, the results indicated cell membrane disruption, impairment of mitochondrial membrane potential, increased levels of reactive oxygen species (ROS), and induced DNA damage.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India.
Pentoxifylline (PTX) is a widely used pharmacological agent for the selection of motile sperm in both normozoospermic and asthenozoospermic ejaculates prior to their use in assisted reproductive technologies (ARTs), e.g. intracytoplasmic sperm injection (ICSI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!