Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To determine the optimal angles for independent femoral tunnel drillings in single-bundle anterior cruciate ligament reconstruction (ACLR) in different races and genders with the aim of preventing damage to lateral femoral anatomic structures (LFAS), posterior cortex and medial femoral condyle.
Methods: This study included 180 volunteers, including 90 Caucasian and 90 matched Chinese. Magnetic resonance imaging (MRI) was used to scan the knees to create three-dimensional bone models, the ACL femoral footprint centre and the LFAS. In each femur model, femoral tunnels were established using a set of 16 distinct angular combinations: 15°, 30°, 45°, and 60° in the axial plane, as well as 15°, 30°, 45°, and 60° in the coronal plane. The minimum distance from the tunnel exit to the LFAS was evaluated, and the tunnel length, posterior cortex damage and medial femoral condyle injury were assessed.
Results: Among the 180 patients with simulated ACL femoral tunnels, there was damage to the anatomical structure in parts of the model. According to the Cochran Q test results (P < 0.001), the percentage of safe tunnels varied significantly among the 16 different drilling angle combinations. The overall occurrence of the tunnel exit causing injury to LFAS were 8.3% and 8.1% in Chinese and Caucasian groups (P = 0.786). The means for tunnel length in Caucasians was 40.1 ± 7.9 mm, respectively; for Chinese, the results was 38.8 ± 6.6 mm (P < 0.001). Females had significantly shorter femoral tunnels than males in both Chinese and Caucasian (P < 0.001). The overall invasion rate of the posterior cortex and medial femoral condyle were 32.6% and 7.4% for Chinese; 31.0% and 7.4% for Caucasians, respectively.
Conclusion: To reduce risks of injury to anatomical structures, such as the LFAS, posterior cortex and medial femoral condyle, specific angle combinations of 30°/45°, 45°/30°, 45°/45°, 45°/60°, 60°/30°, 60°/45° and 60°/60° should be used when creating the femoral tunnel in single-bundle ACLR. The selected drilling angles are critical for optimizing femoral tunnel placement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558813 | PMC |
http://dx.doi.org/10.1186/s13018-024-05181-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!