Precise water demand prediction is essential for the efficient allocation and rational utilisation of regional water resources. This study addressed the challenge associated with medium and long-term water demand prediction by introducing a novel coupled model, HHO-BPNN (Harris Hawks Optimisation-Backpropagation Neural Network). Principal component analysis was employed to reduce the dimensionality of potential water demand factors. The performance of the forecasting models was compared through mean square error (MSE), mean absolute percentage error (MAPE), mean absolute error (MAE), and coefficient of determination (R). The findings indicated that the HHO-BPNN outperformed traditional methods, such as BPNN, support vector machines, and grey prediction model. The study utilised the sliding window method to predict water demand for the next 1, 3, and 5 years for five prefecture-level cities in northern Jiangsu Province, China. High prediction accuracy was achieved across various categories of water demand (agricultural, industrial, domestic, and ecological), with the overall accuracy being impressive at 97%. Additionally, the forecasts aligned well with local developmental plans, suggesting practical applicability for urban planning. This study elucidates the key drivers impacting water demand, providing an effective tool for regional water demand forecasting, facilitating efficient and precise water management and decision-making in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557846 | PMC |
http://dx.doi.org/10.1038/s41598-024-78980-5 | DOI Listing |
Curr Biol
January 2025
Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany. Electronic address:
Brood care relies on interactions between parents and offspring. Emergence of nestlings from their nest has been hypothesized to rely on the readout by the parent of the maturational state of the young. Theoretical considerations predict a conflict: parents should push for early emergence, if possible, to reduce care demands and maximize the number of reproductive cycles, whereas offspring should delay leaving to maximize resource allocation and protection by the parents.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 Henan, China; National Key Laboratory of Coking Coal Green Process Research, Zhengzhou University, Zhengzhou 450001, Henan, China. Electronic address:
Hydrogen production via electrocatalytic water splitting has garnered significant attention, due to the growing demand for clean and renewable energy. However, achieving low overpotential and long-term stability of water splitting catalysts at high current densities remains a major challenge. Herein, a CoP@CoNi layered double hydroxide (LDH) electrode was synthesized via a two-step electrodeposition process, demonstrating oxygen evolution reaction, with an overpotential (ƞ) of 373 mV and a Tafel slope of 64.
View Article and Find Full Text PDFWater Res
January 2025
Georgia Tech Shenzhen Institute (GTSI), Tianjin University, Shenzhen 518067, China. Electronic address:
Nitrogen recovery from urine and CO utilization are both vital for achieving a circular economy and mitigating climate change. Divided engineering solutions have been proposed to address either problem, but there is still a lack of integrated technologies to simultaneously tackle the two tasks. We demonstrated CO-driven ion exchange for nitrogen recovery (CIXNR) from urine and evaluated the process in Malawi.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China; College of Environment and Resources, Xiangtan University, Xiangtan, Hunan 411105, PR China. Electronic address:
A sustainable supply of lithium from salt-lake brines is necessary due to the surge in demand of the lithium-battery market. However, the presence of coexisting ions, particularly Na, poses a significant challenge due to the similarities in charge, electronic structure, and hydrated size. The electrochemical system with manganese (Mn)-based lithium-ion (Li) sieves electrodes is a promising method for Li recovery, but often suffers from geometric configuration distortion, which reduces their selectivity and capacity.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
United States Geological Survey, Upper Midwest Water Science Center, Madison, WI, United States.
Aircraft anti-icers and pavement deicers improve the safety of airport operations during winter precipitation events. Runoff containing these products can contribute elevated biochemical oxygen demand (BOD) to receiving streams. We monitored runoff from Milwaukee Mitchell International Airport at one upstream site, three outfall sites, and one downstream site from 2005 to 2022 for BOD, chemical oxygen demand (COD), and freezing point depressants used in deicing and anti-icing fluids to determine the primary sources of BOD and COD in the receiving stream.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!