Interferon signalling and non-canonical inflammasome activation promote host protection against multidrug-resistant Acinetobacter baumannii.

Commun Biol

Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia.

Published: November 2024

Multidrug-resistant (MDR) Acinetobacter baumannii are of major concern worldwide due to their resistance to last resort carbapenem and polymyxin antibiotics. To develop an effective treatment strategy, it is critical to better understand how an A. baumannii MDR bacterium interacts with its mammalian host. Pattern-recognition receptors sense microbes, and activate the inflammasome pathway, leading to pro-inflammatory cytokine production and programmed cell death. Here, we examined the effects of a systemic MDR A. baumannii infection and found that MDR A. baumannii activate the NLRP3 inflammasome complex predominantly via the non-canonical caspase-11-dependent pathway. We show that caspase-1 and caspase-11-deficient mice are protected from a virulent MDR A. baumannii strain by maintaining a balance between protective and deleterious inflammation. Caspase-11-deficient mice also compromise between effector cell recruitment, phagocytosis, and programmed cell death in the lung during infection. Importantly, we found that cytosolic immunity - mediated by guanylate-binding protein 1 (GBP1) and type I interferon signalling - orchestrates caspase-11-dependent inflammasome activation. Together, our results suggest that non-canonical inflammasome activation via the (Interferon) IFN pathway plays a critical role in the host response against MDR A. baumannii infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557958PMC
http://dx.doi.org/10.1038/s42003-024-07204-3DOI Listing

Publication Analysis

Top Keywords

mdr baumannii
16
inflammasome activation
12
interferon signalling
8
non-canonical inflammasome
8
acinetobacter baumannii
8
programmed cell
8
cell death
8
baumannii infection
8
caspase-11-deficient mice
8
baumannii
7

Similar Publications

Background: Colistin, a last-resort antibiotic for treating multidrug-resistant Gram-negative bacterial infections, has increased resistance as a result of the emergence of the gene. The 1gene, which confers colistin resistance, is often carried on plasmids, facilitating its spread by horizontal gene transfer among bacterial populations. The rising prevalence of 1mediated resistance poses significant challenges for infection control and treatment efficacy.

View Article and Find Full Text PDF

is a well-known opportunistic pathogen, responsible for various nosocomial infections. UOL-KIMZ-24 was previously isolated from a clinical specimen, collected from Lahore General Hospital, Lahore (LGH), Pakistan, dated 3rd March, 2022. During the initial screening for antimicrobial susceptibility, the UOL-KIMZ-24 was found a multiple drug resistant (MDR) strain.

View Article and Find Full Text PDF

Controlling microbial pollutants is a significant public health concern as they cause several chronic microbial infections and illnesses. In recent years, essential oils (EOs) have become intriguing alternatives for synthetic antimicrobials due to their biodegradability, natural source extraction, and strong antibacterial properties. The bactericidal properties of alginate containing lemon essential oil were examined in this investigation.

View Article and Find Full Text PDF

Synthesis, biological evaluation and validation of IMB-881 derivatives as anti-Gram-negative bacterial agents.

Bioorg Med Chem

January 2025

Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. Electronic address:

Infectious diseases caused by drug-resistant bacteria represent one of the most significant global public challenges of this century. There is an urgent need for the treatment of drug-resistant Gram-negative bacterial infections. A series of 3,4-dihydro-2H-[1,3]oxazino[5,6-h]quinoline derivatives were synthesized and evaluated for their antibacterial activity against Gram-negative bacteria including strains from ATCC and clinical isolates, initially revealing the structure-activity relationship.

View Article and Find Full Text PDF

Relationship of biofilm formation with antibiotic resistance, virulence determinants and genetic diversity in clinically isolated Acinetobacter baumannii strains in Karachi, Pakistan.

Microb Pathog

January 2025

Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan. Electronic address:

Multi-drug resistant (MDR) Acinetobacter baumannii causes nosocomial infections due to a plethora of virulence determinants like biofilm formation which are pivotal to its survival and pathogenicity. Hence, investigation of these mechanisms in currently circulating strains is required for effective infection control and drug development. This study investigates the prevalence of antibiotic resistance and virulence factors and their relationship with biofilm formation in Acinetobacter baumannii strains in Karachi, Pakistan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!