Nitrogen is often a limiting nutrient for microbial communities and plants in glacier forefields. Nitrogen-fixing microorganisms (diazotrophs) play an important role in providing bioavailable nitrogen, with their composition determining the nitrogen-fixating capacities. This study investigates the spatial and temporal dynamics of diazotrophs in the forefields of three Tibetan glaciers: Qiangyong, Kuoqionggangri, and Longxiazailongba. We collected soil samples from recently deglaciated barren grounds, and also along an ecosystem succession transect at Kuoqionggangri glacier, encompassing barren ground, herb steppe, legume steppe, and alpine meadow ecosystems. Our finding revealed abundant and diverse diazotrophs in the recently deglaciated barren ground. They are taxonomically affiliated with anaerobic Bradyrhizobium, Desulfobulbus, and Pelobacter, which may be relics from subglacial sediments. The vegetated soils (herb steppe, legume steppe, and alpine meadow) were dominated by phototrophic Nostoc and Anabaena, as well as symbiotic Sinorhizobium. Soil physicochemical parameters, such as soil organic carbon, pH, and nitrate ion, significantly influenced diazotroph community structure. This study highlights the critical role of diazotrophs in mitigating nitrogen limitation during early ecosystem development in glacier forefields. Understanding the distribution and ecological drivers of diazotrophs in these rapidly changing environments provides insights into biogeochemical cycling and ecosystem resilience under climate change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557636 | PMC |
http://dx.doi.org/10.1007/s00248-024-02460-6 | DOI Listing |
Environ Microbiol
December 2024
CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Banyuls sur mer, France.
Phosphorus is an essential component of numerous macromolecules and is vital for life. Its availability significantly influences primary production, particularly in oligotrophic environments. Marine diazotrophic cyanobacteria, which play key roles in biogeochemical cycles through nitrogen fixation (N fixation), have adapted to thrive in phosphate (P)-poor areas.
View Article and Find Full Text PDFISME J
December 2024
Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States.
Foundational to establishment and recovery of biocrusts is a mutualistic exchange of carbon for nitrogen between pioneer cyanobacteria, including the widespread Microcoleus vaginatus, and heterotrophic diazotrophs in its "cyanosphere". In other such mutualisms, nitrogen is transferred as amino acids or ammonium, preventing losses through specialized structures, cell apposition or intracellularity. Yet, in the biocrust symbiosis relative proximity achieved through chemotaxis optimizes the exchange.
View Article and Find Full Text PDFJ Environ Sci (China)
June 2025
Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China. Electronic address:
Freshwater lakes globally are witnessing an escalation in the frequency and intensity of cyanobacterial harmful blooms. However, underlying factors influencing the succession or coexistence of cyanobacteria, especially filamentous ones, remain poorly understood. Lake Honghu, a Ramsar Wetland of International Importance with degrading aquatic ecological quality, served as a case study to elucidate the intricate relationship between environmental changes and cyanobacterial dynamics.
View Article and Find Full Text PDFMicrob Ecol
November 2024
Center for Pan-Third Pole Environment, Lanzhou University, No.222, Tianshui South Road, Chengguan District, Lanzhou, Gansu Province, China.
Appl Microbiol Biotechnol
November 2024
School of Public Health, Lanzhou University, Lanzhou, 730000, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!