A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ring Expansion toward Fused Diazabicyclo[3.1.1]heptanes through Lewis Acid Catalyzed Highly Selective C-C/C-N Bond Cross-Exchange Reaction between Bicyclobutanes and Diaziridines. | LitMetric

Ring Expansion toward Fused Diazabicyclo[3.1.1]heptanes through Lewis Acid Catalyzed Highly Selective C-C/C-N Bond Cross-Exchange Reaction between Bicyclobutanes and Diaziridines.

Angew Chem Int Ed Engl

State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China.

Published: November 2024

AI Article Synopsis

  • Bicyclic scaffolds are important in drug discovery due to their ability to resemble benzene structures.
  • This study presents a novel method using a Lewis acid catalyst to facilitate a reaction between bicyclobutanes and diaziridines, yielding valuable azabicyclo[3.1.1]heptane compounds with high efficiency.
  • The research also successfully scaled up the process and introduced a chiral zinc-based catalyst to promote enantioselective synthesis, achieving significant optical purity.

Article Abstract

The synthesis of bicyclic scaffolds has garnered considerable interest in drug discovery because of their ability to mimic benzene bioisosteres. Herein, we introduce a new approach that utilizes a Lewis acid (Sc(OTf))-catalyzed σ-bond cross-exchange reaction between the C-C bond of bicyclobutanes and the C-N bond of diaziridines to produce multifunctionalized and medicinally interesting azabicyclo[3.1.1]heptane derivatives. The reaction proceeds well with different bicyclobutanes and a broad range of aryl- as well as alkenyl-, but also alkyl-substituted diaziridines (up to 98 % yield). Conducting a scale-up experiment and exploring the synthetic transformations of the cycloadducts emphasized the practical application of the synthesis. Furthermore, a zinc-based chiral Lewis acid catalytic system was developed for the enantioselective version of this reaction (up to 96 % ee).

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202416741DOI Listing

Publication Analysis

Top Keywords

lewis acid
12
cross-exchange reaction
8
ring expansion
4
expansion fused
4
fused diazabicyclo[311]heptanes
4
diazabicyclo[311]heptanes lewis
4
acid catalyzed
4
catalyzed highly
4
highly selective
4
selective c-c/c-n
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!