Background: The failure of conventional therapies and the propensity for recurrence and metastasis make triple-negative breast cancer (TNBC) a formidable challenge with grim prognoses and diminished survival rates. Immunotherapy, including immune checkpoint blockade and chimeric antigen receptor (CAR)-T cell therapy, presents innovative and potentially more effective strategies for addressing TNBC. Within this context, the inducible costimulator (ICOS), a member of the CTLA4/CD28 family, plays a crucial role in regulating immune responses and T-cell differentiation by binding to its ligand ICOSL. However, the impact of the ICOS/ICOSL axis on cancer varies.
Methods: In this study, immunohistochemistry was conducted to examine the expression level of ICOSL in TNBC tumor tissues. We developed ICOS-enhanced B7H3-CAR-T cells (ICOS-B7H3-CAR) using the third-generation CAR-T cell technology, which featured magnified ICOS expression and targeted the B7H3 antigen. Xenograft and metastasis models of TNBC were conducted to examine the cytotoxicity and durability of CAR-T cells in tumors. Overexpression and CRISPR/Cas9-mediated knockout (KO) techniques were employed to regulate the expression of ICOSL on TNBC cell lines.
Results: Notably, we observed elevated ICOSL expression in TNBC tumor tissues, which correlated with poor survival prognosis in patients with TNBC. Compared with conventional B7H3-CAR-T cells, ICOS-B7H3-CAR-T cells significantly inhibited the tumor growth of TNBC cells both in vitro and in vivo, accompanied by increased secretion of cytokines such as interferon gamma and tumor necrosis factor alpha. Furthermore, the in vivo experiments illustrated that ICOS-B7H3-CAR-T cells exhibited prolonged antitumor activity and could effectively eradicate metastases in a TNBC metastasis model, consequently extending survival. Importantly, manipulating the expression of ICOSL on TNBC cells through overexpression or KO significantly influenced the function of ICOS-B7H3-CAR-T cells. This suggests that the level of ICOSL expression on TNBC cells is critical for enhancing the potent antitumor effects of ICOS-B7H3-CAR-T cells.
Conclusion: Overall, our study highlights the potential clinical application of ICOS as a promising strategy for combating TNBC recurrence and metastasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555110 | PMC |
http://dx.doi.org/10.1136/jitc-2024-010028 | DOI Listing |
Sci Rep
December 2024
Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India.
The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.
View Article and Find Full Text PDFJ Control Release
December 2024
Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475000, PR China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475000, PR China; Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, PR China. Electronic address:
Immunogenic cell death (ICD) has recently emerged as a promising strategy in reinforcing anti-PD-L1 blockade immunotherapy of triple-negative breast cancer (TNBC). The CDK4/6 inhibitor palbociclib (PAL), as a clinical star medicine targeting the cell cycle machinery, is an ideal candidate for fabricating a highly efficient ICD inducer for TNBC chemoimmunotherapy. However, the frequently observed chemoresistance and clinical adverse effects, as well as significant antagonistic effects when co-administered with certain chemotherapeutics, have seriously restricted the efficiency of PAL and the feasibility of combination strategies.
View Article and Find Full Text PDFDaru
December 2024
Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Objective(s): Some forms of breast cancer such as triple-negative phenotype, are serious challenge because of high metastatic cases, high mortality and resistance to conventional therapy motivated the search for alternative treatment approaches. Nanomaterials are promising candidates and suitable alternatives for improving tumor and cancer cell treatments.
Materials And Methods: Biosynthesis of ZnO NPs by help of Berberis integerrima fruit extract, has been done.
Ann Med
December 2025
Department of Ultrasonographl, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, Shanxi Province, China.
Objective: To explore the differences of conventional ultrasound characteristics, elastic imaging parameters and clinicopathological characteristics of distinct molecular subtypes of breast cancer in young women, and to identify imaging parameters that exhibited significant associations with each molecular subtype.
Methods: We performed a retrospective analysis encompassing 310 young women with breast cancer. Observations were made regarding the ultrasonography and elastography characteristics of the identified breast lesions.
J Transl Med
December 2024
Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
Background: Aberrant alternative splicing (AS) contributes to tumor progression. A crucial component of AS is cleavage and polyadenylation specificity factor 4 (CPSF4). It remains unclear whether CPSF4 plays a role in triple-negative breast cancer (TNBC) progression through AS regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!