Effective detection technologies in food safety with the merits of portable and on-site detection potential are always in pressing demand. Herein, we developed a nanopore-assisted Enzyme-linked immunosorbent assay (NELISA) platform, which innovatively introduced hairpin DNA (HP DNA) probes as reaction substrates. This innovation of substrates effectively avoided the inherent limitations of colorimetric signals (i.e., low sensitivity and inaccurate results) and greatly improved the sensitivity and accuracy of NELISA platform. The alkaline phosphatase (ALP)-modified detection antibody (ALP-Ab2) can specifically bind to ricin and hydrolyze the phosphate groups modified on the HP DNA probes. Nanopore recordings demonstrated that two states of probes produced highly distinguishable nanopore events, enabling the qualitative and quantitative detection of ricin. This NELISA platform fully combined the specificity of ELISA with the ultra-sensitivity, and unique single-molecule fingerprint recognition of nanopore, showing a great on-site detection potential. This method achieved the ultrasensitive and reliable detection of ricin down to 2.46 fg/mL, which enhanced the detection sensitivity by at least 10-fold compared to traditional ELISA. Furthermore, the proposed method was capable of accurately detecting ricin in real food samples with satisfactory recoveries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2024.127136DOI Listing

Publication Analysis

Top Keywords

on-site detection
12
detection ricin
12
nelisa platform
12
portable on-site
8
detection
8
detection potential
8
dna probes
8
ricin
5
nanopore-assisted elisa
4
elisa ultrasensitive
4

Similar Publications

Innovative Infrared Spectroscopic Technologies for the Prediction of Deoxynivalenol in Wheat.

ACS Food Sci Technol

January 2025

Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, Ulm 89075, Germany.

Mycotoxin contamination in cereals is a global food safety concern. One of the most common mycotoxins in grains is deoxynivalenol (DON), a secondary metabolite produced by the fungi and . Exposure to DON can lead to adverse health effects in both humans and animals including vomiting, dizziness, and fever.

View Article and Find Full Text PDF

A new rhodamine based turn on florescent probe ()-3',6'-bis(ethylamino)-2-(((6-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methylene)amino)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one (RME) was efficiently synthesized through a simple condensation reaction of 2-amino-3',6'-bis(ethylamino)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one and 6-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde. The receptor RME is highly non-fluorescent and when copper ions (Cu ions) are added in DMF/water (1 : 2, v/v) medium, the receptor RME exhibits a specific "turn-on" colorimetric and fluorometric response. Moreover, RME binding with Cu ions produced a remarkable color variation that was perceptible to the human eye, changing from colorless to pink.

View Article and Find Full Text PDF

Integrating commercial personal glucose meter with peroxidase-mimic DNAzyme to develop a versatile point-of-care biosensing platform.

Biosens Bioelectron

January 2025

Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:

The development of point-of-care testing (POCT) methods is highly desirable in molecular detection, as they enable disease diagnosis and biomarker monitoring on-site or at home. Repurposing existing POCT devices to detect diverse biomarkers is an economical way to develop new devices for POCT use. Personal glucose meter (PGM) is one of the most used off-the-shelf POCT devices that has been reused to detect non-glucose targets.

View Article and Find Full Text PDF

Carbaryl is a broad-spectrum carbamate fungicide that may pose a threat to ecosystems and human health. To prevent and control the harm caused by excessive application of carbaryl, a full-dimensional divergence effect SERS sensor has been constructed. Biodegradable paper chips were used as sensor substrates.

View Article and Find Full Text PDF

This study focuses on developing an affordable and cost-effective colorimetric solid-state optical sensor for target-specific naked-eye detection of Pb, offering significant potential for real-time environmental monitoring and public health applications. The indigenously developed porous polymer monolithic template, poly(lauryl methacrylate-co-ethylene glycol dimethacrylate) (poly(LMC-co-EGDMA) is infused with a chromoionophoric probe, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!