Node classification in the heterophilic regime via diffusion-jump GNNs.

Neural Netw

Department of Computer Science and Artificial Intelligence, Alicante, Spain.

Published: January 2025

In the ideal (homophilic) regime of vanilla GNNs, nodes belonging to the same community have the same label: most of the nodes are harmonic (their unknown labels result from averaging those of their neighbors given some labeled nodes). In other words, heterophily (when neighboring nodes have different labels) can be seen as a "loss of harmonicity". In this paper, we define "structural heterophily" in terms of the ratio between the harmonicity of the network (Laplacian Dirichlet energy) and the harmonicity of its homophilic version (the so-called "ground" energy). This new measure inspires a novel GNN model (Diffusion-Jump GNN) that bypasses structural heterophily by "jumping" through the network in order to relate distant homologs. However, instead of using hops as standard High-Order (HO) GNNs (MixHop) do, our jumps are rooted in a structural well-known metric: the diffusion distance. Computing the "diffusion matrix" (DM) is the core of this method. Our main contribution is that we learn both the diffusion distances and the "structural filters" derived from them. Since diffusion distances have a spectral interpretation, we learn orthogonal approximations of the Laplacian eigenvectors while the prediction loss is minimized. This leads to an interplay between a Dirichlet loss, which captures low-frequency content, and a prediction loss which refines that content leading to empirical eigenfunctions. Finally, our experimental results show that we are very competitive with the State-Of-the-Art (SOTA) both in homophilic and heterophilic datasets, even in large graphs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2024.106830DOI Listing

Publication Analysis

Top Keywords

diffusion distances
8
prediction loss
8
node classification
4
classification heterophilic
4
heterophilic regime
4
regime diffusion-jump
4
diffusion-jump gnns
4
gnns ideal
4
ideal homophilic
4
homophilic regime
4

Similar Publications

Physical function, functional capacity, cognition, and brain structure and function in older adults with chronic kidney disease (CKD).

Geriatr Nurs

January 2025

School of Nursing and Division of Rehabilitation and Regenerative Medicine, Columbia University, New York, NY, USA. Electronic address:

Objective: To evaluate associations between brain structure/function with physical function and functional capacity in older adults with CKD and cognitive complaints.

Methods: We evaluated associations between neuroimaging and cognitive function with functional capacity and physical function in older adults (60-80years) with CKD and cognitive complaints (n = 39; age 67.6 years).

View Article and Find Full Text PDF

RetinaRegNet: A zero-shot approach for retinal image registration.

Comput Biol Med

January 2025

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32610, United States; Department of Medicine, University of Florida, Gainesville, FL, 32610, United States; Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, 32610, United States; Intelligent Clinical Care Center, University of Florida, Gainesville, FL, 32610, United States. Electronic address:

Retinal image registration is essential for monitoring eye diseases and planning treatments, yet it remains challenging due to large deformations, minimal overlap, and varying image quality. To address these challenges, we propose RetinaRegNet, a multi-stage image registration model with zero-shot generalizability across multiple retinal imaging modalities. RetinaRegNet begins by extracting image features using a pretrained latent diffusion model.

View Article and Find Full Text PDF

Tyrosine-modified tilapia skin antioxidant peptides and their hydroxyl radical quenching activities.

J Mater Chem B

January 2025

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.

In an antioxidant peptide study, the number and position of active amino acid sites, as well as the peptides' conformation, are found to be crucial for scavenging hydroxyl radicals (˙OH). Herein, ˙the OH scavenging activity of tilapia pentapeptide (P1, YGDQY) and its analogs including P2 (YYYGDQY), P3 (YYGDQYY) and P4 (YYGPDQYY) was investigated. The results showed that the tyrosine's amount, location and the peptides' conformation played important roles in determining peptides' scavenging activity (34.

View Article and Find Full Text PDF

DECT sparse reconstruction based on hybrid spectrum data generative diffusion model.

Comput Methods Programs Biomed

January 2025

Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing, China; School of Computer Science and Engineering, Southeast University, Nanjing, China.

Purpose: Dual-energy computed tomography (DECT) enables the differentiation of different materials. Additionally, DECT images consist of multiple scans of the same sample, revealing information similarity within the energy domain. To leverage this information similarity and address safety concerns related to excessive radiation exposure in DECT imaging, sparse view DECT imaging is proposed as a solution.

View Article and Find Full Text PDF

We here explore confinement-induced assembly of whey protein nanofibrils (PNFs) into microscale fibers using microfocused synchrotron X-ray scattering. Solvent evaporation aligns the PNFs into anisotropic fibers, and the process is followed in situ by scattering experiments within a droplet of PNF dispersion. We find an optimal temperature at which the order parameter of the protein fiber is maximized, suggesting that the degree of order results from a balance between the time scales of the forced alignment and the rotational diffusion of the fibrils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!