A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Liposomal honokiol inhibits non-small cell lung cancer progression and enhances PD-1 blockade via suppressing M2 macrophages polarization. | LitMetric

Liposomal honokiol inhibits non-small cell lung cancer progression and enhances PD-1 blockade via suppressing M2 macrophages polarization.

Phytomedicine

Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China. Electronic address:

Published: December 2024

Background: Honokiol (HNK), a natural phenolic compound derived from Magnolia plants, exhibits therapeutic effects on various diseases, including cancer. The advent of immune checkpoint inhibitors (ICIs) has marked a breakthrough in non-small cell lung cancer (NSCLC) treatment. However, a significant subset of patients exhibits primary or acquired resistance to anti-PD-1/PD-L1 therapies, necessitating the development of novel combination strategies to enhance therapeutic efficacy and overcome resistance.

Purpose: This study aimed to explore the anti-tumor efficacy of liposomal honokiol (Lipo-HNK) and elucidate the synergistic effects of Lipo-HNK and ICIs on NSCLC.

Methods: The effects of Lipo-HNK on cell proliferation and apoptosis were assessed in human lung cancer cell lines H460 and A549, and mouse Lewis lung cancer cell line (LL2). A murine lung cancer model was established by injecting LL2 cells via the tail vein to evaluate the therapeutic effects of Lipo-HNK and ICIs. Tumor microenvironment features were characterized using immunofluorescence and flow cytometry. Primary macrophages were extracted from mouse bone marrow for mechanistic studies. High-throughput sequencing and bioinformatics analyses of Lipo-HNK-treated macrophages were conducted to identify key signaling pathways, which were subsequently confirmed by Western blotting and inhibitor blockade.

Results: Lipo-HNK, with enhanced solubility and bioavailability, demonstrated potent cytotoxicity against NSCLC cell lines. In the murine lung cancer model, Lipo-HNK exhibited synergistic anti-cancer effects when combined with anti-PD-1 therapy. Immunofluorescence and flow cytometry analyses revealed that Lipo-HNK significantly reduced the infiltration of myeloid-derived suppressor cells (MDSCs) and M2 macrophages (CD206+). Macrophage depletion experiment showed the anti-tumor effects of Lipo-HNK was macrophage-dependent. M2 macrophages induced by tumor-conditioned medium (TCM) or interleukin-4 (IL-4) released immunosuppressive cytokines such as IL-10, Arg-1, and TGF-β. RNA sequencing analyses showed that Lipo-HNK effectively inhibited the PI3K/Akt signaling pathway, blocking macrophage polarization to the M2 type. Furthermore, the combination of Lipo-HNK and anti-PD-1 therapy led to increased CD8+ T-cell infiltration and activation, enhancing the overall anti-tumor immune response.

Conclusion: This study validated the anti-tumor efficacy of Lipo-HNK against NSCLC. Lipo-HNK reduced the infiltration of MDSCs and M2 macrophages by inhibiting the PI3K/Akt pathway and enhanced the therapeutic effects of ICIs. These findings provide evidence and new insights into Lipo-HNK as a promising anti-cancer drug for NSCLC treatment, highlighting its potential to overcome resistance to current ICI therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2024.156093DOI Listing

Publication Analysis

Top Keywords

lung cancer
24
effects lipo-hnk
16
lipo-hnk
13
therapeutic effects
12
liposomal honokiol
8
non-small cell
8
cell lung
8
nsclc treatment
8
anti-tumor efficacy
8
lipo-hnk icis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!