Electrocatalytic CH amination of hydrocarbons is a promising avenue for the synthesis of high-value CN compounds. However, efficient activation of CH bonds remains a significant challenge in electrocatalytic CN coupling. Herein, we present a novel strategy to enhance the electrocatalytic conversion of toluene to N-benzylacetamide through a Ritter-type reaction by engineering a hydrophobic electrode-electrolyte interface using polytetrafluoroethylene (PTFE)-coated carbon paper (CP). The hydrophobic CP-based electrode exhibited a superior N-benzylacetamide productivity of 1860.9 mmol mh and a substantially higher Faradaic efficiency (FE) of 70.1 % compared to pure CP (41.5 %). Experimental results and density functional theory (DFT) calculations reveal that the PTFE coating promotes toluene adsorption and efficiently lowers the energy barrier for toluene dehydrogenation. Additionally, the hydrophobic interface effectively hinders water adsorption on the electrode, suppressing the competitive water oxidation reaction. This study underscores the crucial role of interfacial engineering in optimizing electrocatalytic CN coupling reactions for the sustainable synthesis of high-value amide compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.10.192 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
The replacement of the thermodynamically unfavorable anodic oxygen evolution reaction (OER) with a more favorable organic oxidation reaction, such as the anodic oxidation of benzylamine, has garnered significant interest in hybrid water electrolyzer cells. This approach promises the production of value-added chemicals alongside hydrogen fuel generation, improving overall energy efficiency. However, achieving high current density for benzylamine oxidation without interference from OER remains a challenge, limiting the practical efficiency of the electrolyzer cell.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
In the electrocatalytic (EC) degradation process, challenges such as inefficient mass transfer, suboptimal mineralization rates, and limited current efficiency have restricted its broader application. To overcome these obstacles, this study synthesized spherical particle electrodes (FeNi@BC) with superior electrocatalytic performance using a bio-inspired preparation method. A three-dimensional electrocatalytic oxidation system based on FeNi@BC electrode, EC/FeNi@BC, showed excellent degradation efficiency of sulfamethoxazole (SMX), reaching 0.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Applied Science Department, The NorthCap University, 122017, Gurugram, Haryana, India.
For the first time, a TiCT-MXene and poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS) composite-modified electrode has been developed for electrochemical detection of the bilirubin (BR) by molecularly imprinted ortho-phenylenediamine (o-PD). BR is a biomarker for liver-related diseases. High levels of BR imply liver dysfunction; hence, its exact and rapid measurement is indispensable to its immediate diagnosis and treatment.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States.
To elucidate interfacial dynamics during electrocatalytic reactions, it is crucial to understand the adsorption behavior of organic molecules on catalytic electrodes within the electric double layer (EDL). However, the EDL structure in aqueous environments remains intricate when it comes to the electrochemical amination of acetone, using methylamine as a nitrogen source. Specifically, the interactions of acetone and methylamine with the copper electrode in water remain unclear, posing challenges in the prediction and optimization of reaction outcomes.
View Article and Find Full Text PDFAnal Biochem
March 2025
Department of Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta, 577451, Karnataka, India.
In the present work, a convenient, efficient and disposable electrochemical sensor has been developed by electropolymerizing methylene blue (PMB) on the surface of a pencil graphite electrode (PGE), which facilitates the electrochemical analysis of an antioxidant l-Ascorbic Acid (AA). The structural characteristics of both the methylene blue modified pencil graphite electrode (PMB/PGE) and the bare pencil graphite electrode (BPGE) have been examined using scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray analysis (EDX). Additionally, the charge transfer behavior has been evaluated using the electron impedance spectroscopy (EIS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!