A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced biodegradation of glyphosate by Chlorella sorokiniana engineered with exogenous purple acid phosphatase. | LitMetric

Enhanced biodegradation of glyphosate by Chlorella sorokiniana engineered with exogenous purple acid phosphatase.

Water Res

Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China. Electronic address:

Published: January 2025

Organophosphate pesticides, particularly glyphosate, persist in aquatic environments due to widespread agricultural usage, posing substantial environmental and health risks. This study explores the bioremediation potential of genetically engineered Chlorella sorokiniana, expressing purple acid phosphatase (PAP) from Phaeodactylum tricornutum, for glyphosate biodegradation. The engineered strain (OE line) demonstrated complete glyphosate biodegradation at concentrations below 10 ppm within 4-6 days, surpassing the wild type (WT). Enhanced biodegradation in the OE line was attributed to increased growth and ATP levels due to the release of inorganic phosphate, indicating enhanced metabolic efficiency. Photosynthetic parameters, as well as chlorophyll, and carotenoid contents, were significantly improved, driving higher biomass accumulation. Metabolic shifts toward lipogenesis were observed, supported by the upregulation of triacylglycerol-related genes. Additionally, antioxidant enzyme activities (GPx, SOD, CAT) were elevated in the OE line, mitigating oxidative stress. Importantly, the overexpression of PAP activated and upregulated the level of endogenous CsPAP18, which displayed stable binding with glyphosate and its metabolite aminomethylphosphonic acid, highlighting the synergistic role of PAP and CsPAP18 in glyphosate biodegradation. The OE line effectively treated glyphosate-contaminated real wastewater, confirming the feasibility of engineered strain for environmental remediation. This study provides valuable insights into the potential of engineered microalgae for effective and sustainable wastewater treatment, specifically targeting the removal of organophosphate contaminants in freshwater environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.122737DOI Listing

Publication Analysis

Top Keywords

glyphosate biodegradation
12
enhanced biodegradation
8
chlorella sorokiniana
8
purple acid
8
acid phosphatase
8
engineered strain
8
glyphosate
6
engineered
5
biodegradation glyphosate
4
glyphosate chlorella
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!