Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bisphenol AF (BPAF) is degraded through the ultrasound-assisted in situ generation and activation of hydrogen peroxide (HO) by the copper(II) catalysed oxidation of hydroxylamine (NHOH) with dioxygen (O). Compared to added HO, in situ generated HO significantly improves the degradation of BPAF from 46.7% to 94.8% in ∼15 min. The reaction follows a pseudo-first-order kinetic model. This study examines the influence of solution pH, anions, humic acid, and different concentrations of the reactants on BPAF degradation. Mass spectrometry was used to identify the BPAF degradation products, and a degradation pathway is proposed. This work advances the understanding of in situ hydrogen peroxide generation and activation in advanced oxidation (Fenton-like) processes (AOPs).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.123267 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!