A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The roles of IL-17A and IL-17F in hidradenitis suppurativa pathogenesis: evidence from human in vitro preclinical experiments and clinical samples. | LitMetric

AI Article Synopsis

  • Hidradenitis suppurativa (HS) is a chronic skin condition marked by inflammation, where cytokines IL-17A and IL-17F are known to be elevated. A monoclonal antibody called bimekizumab targets both IL-17A and IL-17F to treat HS.
  • The study utilized RNA sequencing on skin biopsies from HS patients to explore gene expression changes before and after bimekizumab treatment, revealing key genes related to neutrophil activity that are affected by the drug.
  • Results showed that dual inhibition of IL-17A and IL-17F more effectively reduced HS-related gene expression and neutrophil movement in cultured cells than targeting either cytok

Article Abstract

Background: Hidradenitis suppurativa (HS) is a chronic, relapsing inflammatory skin disease associated with significant comorbidities and poor quality of life. Despite uncertainty about pathways driving inflammation in HS lesions, the cytokines IL-17A and IL-17F have been shown to be upregulated in patients with HS. Previous studies demonstrated that the monoclonal IgG1 antibody bimekizumab selectively inhibits IL-17F in addition to IL-17A.

Objectives: To further investigate the roles of IL-17A and IL-17F in HS pathogenesis.

Methods: RNA sequencing was conducted on skin biopsies taken at baseline and after treatment at Week 12 of the phase 2 proof of concept study of bimekizumab in patients with moderate to severe HS. Differentially expressed genes were identified between baseline lesional and non-lesional samples and between lesional samples before and after bimekizumab treatment to describe molecular disease mechanisms and treatment effect.Human hair follicular keratinocytes (HHFK) were cultured and treated with the supernatant of stimulated Th17 cells in combination with anti-IL-17A, anti-IL-17F, anti-IL-17A and anti-IL-17F, or IgG control antibodies. Total mRNA was analysed by RNA sequencing (RNAseq). Cellular supernatants from the stimulated HHFKs were used as a source of Th17-induced chemoattractants in neutrophil chemotaxis assays.

Results: RNAseq revealed that the most prominently upregulated genes within HS lesions included those associated with neutrophil biology. Bimekizumab treatment resulted in reduced expression of these genes. Extent of reduction in gene expression was dependent on HiSCR50 fulfilment. In vitro, dual inhibition of IL-17A and IL-17F had greater attenuation of Th17-induced HS-associated genes and neutrophil migration in HHFKs compared to IL-17A or IL-17F inhibition alone. In situ hybridisation revealed IL-17A and IL-17F producing cells in HS lesions can lack IL-23R and IL-1β could induce IL-23-independent IL-17F expression in vitro. Furthermore, mucosal-associated invariant cells in HS tunnels expressed IL-17F and IL-1R1. IL-1β, IL-17A and IL-17F expressing cells were found to be co-localised in HS lesions.

Conclusions: These data support the hypothesis that IL-17A and IL-17F play central roles in HS, a neutrophilic dermatosis. The presence of IL-1β may partly explain the high expression of IL-17F in lesional HS tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bjd/ljae442DOI Listing

Publication Analysis

Top Keywords

il-17a il-17f
32
il-17f
12
roles il-17a
8
hidradenitis suppurativa
8
rna sequencing
8
bimekizumab treatment
8
anti-il-17a anti-il-17f
8
il-17a
7
il-17f hidradenitis
4
suppurativa pathogenesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!