Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sulfur is an essential element for life. Bacteria can obtain sulfur from inorganic sulfate; but in the sulfur starvation-induced response, employ two-component flavin-dependent monooxygenases (TC-FMOs) from the and operons to assimilate sulfur from environmental compounds including alkanesulfonates and dialkylsulfones. Here, we report binding studies of oxidized FMN to enzymes involved within the enzymatic pathway responsible for converting dimethylsulfone (DMSO) to sulfite. In this catabolic pathway, SfnG serves as the initial TC-FMO for sulfur assimilation, which is investigated in detail by solving the 2.6-Å resolution crystal structure of unliganded SfnG and the 1.75-Å resolution crystal structure of the SfnG ternary complex containing FMN and DMSO. We find that SfnG adopts a (β/α) barrel fold with a distinct quaternary configuration from other tetrameric class C TC-FMOs. To probe the unexpected tetramer arrangement, structural heterogeneity is assessed by chromatography and light scattering to confirm ligand binding correlates with a tetramer. Binding of FMN and DMSO accompanies ordering of the active site, with DMSO bound on the -face of the flavin. A previously unobserved protein backbone conformation is found within the oxygen-binding site on the -face of the flavin. Functional assays and the positioning of ligands with respect to the oxygen-binding site are consistent with use of an N5-(hydro)peroxyflavin pathway. Biochemical endpoint assays and docking studies reveal SfnG breaks the C-S bond of a range of dialkylsulfones.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11588060 | PMC |
http://dx.doi.org/10.1073/pnas.2401858121 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!