Tuberculosis is one of the most common causes of death worldwide, with a rapid emergence of multi-drug-resistant strains underscoring the need for new antituberculosis drugs. Recent studies indicate that lansoprazole-a known gastric proton pump inhibitor and its intracellular metabolite, lansoprazole sulfide (LPZS)-are potential antituberculosis compounds. Yet, their inhibitory mechanism and site of action still remain unknown. Here, we combine biochemical, computational, and structural approaches to probe the interaction of LPZS with the respiratory chain supercomplex IIIIV of , a close homolog of supercomplex. We show that LPZS binds to the Q cavity of the mycobacterial supercomplex, inhibiting the quinol substrate oxidation process and the activity of the enzyme. We solve high-resolution (2.6 Ã…) cryo-electron microscopy (cryo-EM) structures of the supercomplex with bound LPZS that together with microsecond molecular dynamics simulations, directed mutagenesis, and functional assays reveal key interactions that stabilize the inhibitor, but also how mutations can lead to the emergence of drug resistance. Our combined findings reveal an inhibitory mechanism of LPZS and provide a structural basis for drug development against tuberculosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11588064 | PMC |
http://dx.doi.org/10.1073/pnas.2412780121 | DOI Listing |
Cytokine
December 2024
Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China; Department of Parasitology, the Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot 010107, China; Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot 010050, China. Electronic address:
Background: Tuberculous pleural effusion (TPE) diagnosis still faces many difficulties and challenges. Some studies have shown that pleural interleukin -27 (IL-27) had a diagnostic potential for TPE. However, their findings are not always consistent.
View Article and Find Full Text PDFFront Bioeng Biotechnol
December 2024
Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
Objective: In the current study, to demonstrate the advantages of oblique lateral interbody fusion (OLIF), we focused on the therapeutics for lumbar spinal tuberculosis with the comparison of three treatments, including anterior approach, posterior approach, and OLIF combined with posterior percutaneous pedicle screw fixation.
Methods: This study included patients with lumbar spinal tuberculosis from July 2015 to June 2018. We divided these patients into three groups: 35 patients underwent an anterior-only approach (Group A), 36 patients underwent a posterior-only approach (Group B), and 31 patients underwent OLIF combined with posterior percutaneous pedicle screw fixation (Group C).
Brief Bioinform
November 2024
Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Beijing 100020, China.
Drug resistance in Mycobacterium tuberculosis (Mtb) is a significant challenge in the control and treatment of tuberculosis, making efforts to combat the spread of this global health burden more difficult. To accelerate anti-tuberculosis drug discovery, repurposing clinically approved or investigational drugs for the treatment of tuberculosis by computational methods has become an attractive strategy. In this study, we developed a virtual screening workflow that combines multiple machine learning and deep learning models, and 11Â 576 compounds extracted from the DrugBank database were screened against Mtb.
View Article and Find Full Text PDFTurk J Med Sci
December 2024
Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong, Bogor, Indonesia.
Background/aim: Tuberculosis (TB) has become the world's deadliest disease. The lack of an effective therapeutic drug to treat it is one of the obstacle for doctors. Today, multidrug-resistant TB cases are increasing.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
Isoniazid and rifampicin co-therapy are the main causes of anti-tuberculosis drug-induced liver injury (ATB-DILI) and acute liver failure, seriously threatening human health. However, its pathophysiology is not fully elucidated. Growing evidences have shown that fibroblast growth factors (FGFs) play a critical role in diverse aspects of liver pathophysiology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!