Metabolic reprogramming is a common feature in tumor progression and metastasis. Like proteins, lipids can transduce signals through lipid-protein interactions. During tumor initiation and metastasis, dysregulation of the Hippo pathway plays a critical role. Specifically, the inhibition of YAP1 phosphorylation leads to the relocation of YAP1 to the nucleus to activate transcription of genes involved in metastasis. Although recent studies reveal the involvement of phosphatidylethanolamine (PE) synthesis enzyme phosphoethanolamine cytidylyltransferase 2 (PCYT2) in tumor chemoresistance, the effect of PCYT2 on tumor metastasis remains elusive. Here, we show that PCYT2 was significantly downregulated in metastatic colorectal cancer (CRC) and acted as a tumor metastasis suppressor. Mechanistically, PCYT2 increased the interaction between PEBP1 and YAP1-phosphatase PPP2R1A, thus disrupting PPP2R1A-YAP1 association. As a result, phosphorylated YAP1 levels were increased, leading to YAP1 degradation through the ubiquitin protease pathway. YAP1 reduction in the nucleus repressed the transcription of ZEB1 and SNAIL2, eventually resulting in metastasis suppression. Our work provides insight into the role of PE synthesis in regulating metastasis and presents PCYT2 as a potential therapeutic target for CRC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665560 | PMC |
http://dx.doi.org/10.1172/jci.insight.178823 | DOI Listing |
Medicine (Baltimore)
January 2025
Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China.
Colorectal cancer is one of the most common malignant tumors in the world, and about 50% of its advanced patients will have liver metastasis. Preoperative assessment of the risk of liver metastasis in patients with colorectal cancer is of great significance for making individualized treatment plans. Traditional imaging examinations and tumor markers have some limitations in predicting the risk of liver metastasis.
View Article and Find Full Text PDFChem Biol Drug Des
January 2025
Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
Hepatocellular carcinoma (HCC) presents an escalating public health challenge globally. However, drug resistance has emerged as a major impediment to successful HCC treatment, limiting the efficacy of curative interventions. Despite numerous investigations into the diverse impacts of hsa-miR-125a-5p on tumor growth across different cancer types, its specific involvement in chemotherapy resistance in HCC remains elusive.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA. Electronic address:
Tumor Treating Fields (TTFields) are electric fields clinically approved for cancer treatment, delivered via arrays attached to the patient's skin. Here, we present a protocol for applying TTFields to torso orthotopic and subcutaneous mouse tumor models using the inovivo system. We guide users on proper system component connections, study protocol design, mouse fur depilation, array application, and treatment condition adjustment and monitoring.
View Article and Find Full Text PDFJ Cancer Res Ther
December 2024
Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.
Background: Colorectal cancer (CRC) is one of the most common cancers worldwide. The mechanisms underlying metastasis, which contributes to poor outcomes, remain elusive.
Methods: We used the Cancer Genome Atlas dataset to compare mRNA expression patterns of integrin α6 (ITGA6) and integrin β4 (ITGB4) in patients with CRC.
J Cancer Res Ther
December 2024
Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China.
Background: Endoscopic submucosal dissection (ESD) is a standardized procedure for intramucosal and slightly invasive submucosal colorectal cancers (CRC). However, the role of ESD for T1b (depth of submucosal invasion: ≥1,000 μm) CRC remains unclear. This study aimed to investigate the long-term efficacy and safety of ESD for T1b CRC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!