Oxygen Vacancy-Enriched Alumina Stabilized Pd Nanocatalysts for Selective Hydrogenation of Phenols.

J Am Chem Soc

New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Published: November 2024

The prevalence of electronic defects has not been successfully demonstrated in nonreducible oxides. This work presents a straightforward approach to the preparation of a yellow alumina rich in F-centers (oxygen vacancies containing free electrons), which is well characterized by systematic spectral methods. The surface electron density of the as-prepared F-center enriched alumina sample was estimated to be approximately 0.35 mmol·g. Free electrons on the surface can reduce palladium precursors in situ, leading to the deposition of fine Pd nanoparticles on alumina. The produced Pd nanocatalysts are highly effective in the selective hydrogenation of phenol to cyclohexanone, achieving a high catalytic performance under mild conditions (30 °C and 0.1 MPa of H). Systematic mechanism investigations reveal that hydroxyl radicals generated at the catalyst interfaces facilitate the activation of phenol. The activated phenol is then sequentially hydrogenated to give the intermediate 2-cyclohexenone and then the desired cyclohexanone. The catalyst system demonstrates efficacy in selectively hydrogenating substituted phenols into a wide array of functional ketones.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c11726DOI Listing

Publication Analysis

Top Keywords

selective hydrogenation
8
free electrons
8
oxygen vacancy-enriched
4
alumina
4
vacancy-enriched alumina
4
alumina stabilized
4
stabilized nanocatalysts
4
nanocatalysts selective
4
hydrogenation phenols
4
phenols prevalence
4

Similar Publications

Efficient amine-assisted CO hydrogenation to methanol co-catalyzed by metallic and oxidized sites within ruthenium clusters.

Nat Commun

January 2025

Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China.

Amine-assisted two-step CO hydrogenation is an efficient route for methanol production. To maximize the overall catalytic performance, both the N-formylation of amine with CO (i.e.

View Article and Find Full Text PDF

This paper presents a surrogate-assisted global and distributed local collaborative optimization (SGDLCO) algorithm for expensive constrained optimization problems where two surrogate optimization phases are executed collaboratively at each generation. As the complexity of optimization problems and the cost of solutions increase in practical applications, how to efficiently solve expensive constrained optimization problems with limited computational resources has become an important area of research. Traditional optimization algorithms often struggle to balance the efficiency of global and local searches, especially when dealing with high-dimensional and complex constraint conditions.

View Article and Find Full Text PDF

A generalizable methodology for predicting retention time of small molecule pharmaceutical compounds across reversed-phase HPLC columns.

J Chromatogr A

December 2024

Synthetic Molecule Pharmaceutical Science, gRED, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, United States. Electronic address:

Quantitative structure retention relation (QSRR) is an active field of research, primarily focused on predicting chromatography retention time (Rt) based on molecular structures of an input analyte on a single or limited number of reversed-phase HPLC (RP-HPLC) columns. However, in the pharmaceutical chemistry manufacturing and controls (CMC) settings, single-column QSRR models are often insufficient. It is important to translate retention time across different HPLC methods, specifically different stationary phases (SP) and mobile phases (MP), to guide the HPLC method development, and to bridge organic impurity profiles across different development phases and laboratories.

View Article and Find Full Text PDF

Through extensive research, nitroxyl (HNO) has emerged as a newly recognized redox signal in plant developmental and stress responses. The interplay between nitric oxide (●NO) and HNO entails a complex network of signaling molecules and regulatory elements sensitive to the environment's specific redox conditions. However, functional implications for HNO in cell signaling require more detailed studies, starting with identifying HNO-level switches.

View Article and Find Full Text PDF

B-box (BBX) transcription factors play crucial roles in plant growth, development, and defense responses to biotic and abiotic stresses. In this study, we cloned a BBX transcription factor gene, from cucumber and analyzed its role in the plant's defense against the feeding of . is expressed throughout all developmental stages in cucumber, with the highest expression in the leaves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!