Changes in gut flora are associated with liver fibrosis. The interactions of host with intestinal flora are still unknown, with little research investigating such interactions with comprehensive multi-omics data. The present work analyzed and integrated large-scale multi-omics transcriptomics, microbiome, metabolome, and single-cell RNA-sequencing datasets from Kaempferol-treated and untreated control groups by advanced bioinformatics methods. This study concludes that kaempferol dose-dependently improved serum markers (like AST, ALT, TBil, Alb, and PT) and suppressed fibrosis markers (including HA, PC III, LN, α-SMA, and Collagen I), while kaempferol also increased body weight. Mechanistically, kaempferol improved the metabolic levels of intestinal flora dysbiosis and associated lipids. This was achieved by increasing the abundance of g__Robinsoniella, g__Erysipelotrichaceae_UCG-003, g__Coriobacteriaceae_UCG-002, and 5-Methylcytidine, all-trans-5,6- Epoxyretinoic acid, LPI (18:0), LPI (20:4), etc. to achieve this. Kaemferol exerts anti-inflammatory and immune-enhancing effects by down-regulating the Th17/IL-17 signaling pathway in PDGF-induced LX2 cells. In addition, kaempferol administration remarkably elevated CD4 + T and CD8 + T cellular proportions, thereby activating immune cells for protecting the body and controlling inflammatory conditions. The combined interaction of multiple data may explain how Kaempferol modulates the intestinal flora thereby remodeling the hepatocyte population and alleviating liver fibrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10753-024-02184-2 | DOI Listing |
Bioact Mater
April 2025
School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei, 230011, PR China.
Oxidative stress, dysbiosis, and immune dysregulation have been confirmed to play pivotal roles in the complex pathogenesis of inflammatory bowel disease (IBD). Herein, we design copper ion-luteolin nanocomplexes (CuL NCs) through a metal-polyphenol coordination strategy, which plays a multifaceted role in the amelioration of IBD. The fabricated CuL NCs function as therapeutic agents with exceptional antioxidant and anti-inflammatory capabilities because of their great stability and capacity to scavenge reactive oxygen species (ROS).
View Article and Find Full Text PDFiScience
November 2024
Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China.
Inflammatory bowel disease (IBD) presents a range of extraintestinal manifestations, notably including oral cavity involvement. The mechanisms underlying oral-gut crosstalk in IBD are not fully understood. Exosomes, found in various body fluids such as saliva, play an unclear role in IBD that requires further exploration.
View Article and Find Full Text PDFObes Pillars
March 2025
Northwestern Medicine Regional Medical Group, 25 N Winfield Road, Suite 520, Winfield, IL 60190, USA.
Background: In 2022, the Obesity Medicine Association (OMA) published a Clinical Practice Statement (CPS) which provided an overview of bariatric surgery and related procedures, a discussion on gastrointestinal hormones and a review of the microbiome as it relates to patients with obesity. This update to the 2022 OMA CPS provides a focus on nutrition as it relates to the adult bariatric surgery patient, incorporating a detailed discussion on how to conduct a bariatric nutrition assessment and manage patients seeking metabolic and bariatric surgery (MBS) and postoperative nutrition care. In particular, the section on macronutrients, micronutrients, and bariatric surgery has been updated, highlighting practical approaches to nutrient deficiencies typically encountered in the bariatric surgery patient.
View Article and Find Full Text PDFBiol Sport
January 2025
PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain.
Increasing physical activity (PA) is recognised as an efficacious approach for preventing and treating cardiometabolic diseases. Recently, the composition of microorganisms living within the gut has been proposed as an important appropriate target for treating these diseases. Whether PA is related to faecal microbiota diversity and composition in humans remains to be ascertained.
View Article and Find Full Text PDFMol Nutr Food Res
January 2025
Department of Veterinary Surgery, College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.
Cisplatin (CIS) is a broad-spectrum anticancer drug widely used in the clinic; however, one of its side effects is that it can cause intestinal damage such as loss of appetite, vomiting, and diarrhea in patients. Epigallocatechin gallate (EGCG) is one of the main active substances in green tea, which has the effects of antitumor multiple drug resistance, antioxidation, and antiinflammatory properties. The aim of this study was to explore the protective effect of EGCG on CIS-induced intestinal injury in rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!