Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanoparticle surfactant (NPS) is a highly competitive means for stabilizing liquid-liquid interfaces, endowing interfacial assemblies with functionalities, and enabling the construction of all-liquid devices. Integrating different types of supramolecular interactions into NPSs would open possibilities to generate interfaces that are responsive to multiple stimuli. Here, by using donor-acceptor interactions between polydopamine nanoparticles (PDA NPs) and methyl viologen (MV) terminated polystyrene, the formation, assembly, and jamming of a supramolecular NPS at the water-toluene interface is demonstrated. Harnessing the redox properties of both catechol and MV, the dual-redox responsiveness can be achieved, allowing the reconfiguration of NPS-based structured liquids. Using NPS as an emulsifier, oil-in-water (O/W), water-in-oil (W/O), and oil-in-water-in-oil (O/W/O) Pickering emulsions can be obtained in one step, which exhibit smart responsiveness to redox reagents. Taking advantage of the adsorption capacity of PDA NPs, the purification of dye-polluted water can be achieved through O/W Pickering emulsions. We envision that this unique dual-redox responsive biphasic system would hold great potential for developing sophisticated controlled-release systems as well as other intelligent, functional materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c14952 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!