A series of new cationic first-row transition metal complexes of [Mn(sac)(HO)(tpma)](sac)·HO (Mn), [(μ-O){FeCl(tpma)}](sac)·3HO (Fe), [Co(sac)(HO)(tpma)](sac)·HO (Co), [Ni(HO)(tpma)](sac)·2HO (Ni), [Cu(sac)(tpma)](sac) (Cu) and [Zn(sac)(HO)(tpma)](sac) (Zn), where sac = saccharinate and tpma = tris(2-pyridylmethyl)amine, were synthesized and structurally characterized by elemental analysis, UV-Vis, IR, ESI-MS, NMR, X-ray diffraction and conductivity measurements. The cytotoxic activity of the metal complexes was evaluated against lung carcinoma (A549), breast adenocarcinoma (MCF7), colon (HT29), and normal BEAS-2B cell lines. Mn and Fe displayed potent cytotoxic activity in all cell lines with IC values between 1.99 ± 0.33 and 6.65 ± 0.67 μM, while Cu moderately affected the growth of HT29 cells. However the rest of the metal complexes did not demonstrate any growth inhibitory effect. Further studies with Fe treated HT29 cells through cellular imaging analysis indicated that Fe significantly induced intracellular ROS (reactive oxygen species) accumulation, mitochondrial dysfunction and double-strand DNA breaks, and eventually caused apoptotic cell death through the intrinsic pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4dt02258k | DOI Listing |
Pharmaceutics
January 2025
Laboratory of Nuclear Medicine (LIM-43), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil.
Background/objectives: Dithiocarbazates (DTCs) and their metal complexes have been studied regarding their property as anticancer activities. In this work, using S-benzyl-5-hydroxy-3-methyl-5-phenyl-4,5-dihydro-1H-pirazol-1-carbodithionate (Hbdtc), we prepared [ReO(bdtc)(Hbdtc)] and [[Tc]TcO(bdtc)(Hbdtc)] complexes for tumor uptake and animal biodistribution studies.
Methods: Re complex was prepared by a reaction of H2bdtc and (NBu)[ReOCl], the final product was characterized by IR, H NMR, CHN, and MS-ESI.
Polymers (Basel)
January 2025
Department of Chemistry, St. Petersburg University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia.
This study investigates the electrochemical degradation mechanisms of nickel-salen (NiSalen) polymers, with a focus on improving the material's stability in supercapacitor applications. We analyzed the effects of steric hindrance near the nickel center by incorporating different bulky substituents into NiSalen complexes, aiming to mitigate water-induced degradation. Electrochemical performance was assessed using cyclic voltammetry, operando conductance, and impedance measurements, while X-ray photoelectron spectroscopy (XPS) provided insights into molecular degradation pathways.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA.
This review examines the recent advancements and unique properties of polymer-inorganic hybrid materials formed through coordination bonding (Class II hybrids), which enable enhanced functionality and stability across various applications. Here, we categorize these materials based on properties gained through complexation, focusing on electrical conductivity, thermal stability, photophysical characteristics, catalytic activity, and nanoscale self-assembly. Two major synthetic approaches to making these hybrids include homogeneous and heterogeneous methods, each with distinct tradeoffs: Homogeneous synthesis is straightforward but requires favorable mixing between inorganic and polymer species, which are predominantly water-soluble complexes.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
To solve the energy crisis and environmental issues, it is essential to create effective and sustainable energy conversion and storage technologies. Traditional materials for energy conversion and storage however have several drawbacks, such as poor energy density and inadequate efficiency. The advantages of MOF-based materials, such as pristine MOFs, also known as porous coordination polymers, MOF composites, and their derivatives, over traditional materials, have been thoroughly investigated.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
As a structural and catalytic cofactor, copper is involved in many biological pathways and is required for the biochemistry of all living organisms. However, excess intracellular copper can induce cell death due to its potential to catalyze the generation of reactive oxygen species, thus copper homeostasis is strictly regulated. And the deficiency or accumulation of intracellular copper is connected with various pathological conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!