To develop an empirical model to predict carbon ion (C-ion) relative biological effectiveness (RBE).We used published cell survival data comprising 360 cell line/energy combinations to characterize the linear energy transfer (LET) dependence of cell radiosensitivity parameters describing the dose required to achieve a given survival level, e.g. 5% (D), which are linearly correlated between photon and C-ion radiations. Based on the LET response of the metrics Dand D, we constructed a model containing four free parameters that predicts cells' linear quadratic model (LQM) survival curve parameters for C-ions,and, from the reference LQM parameters for photons,and, for a given C-ion LET value. We fit our model's free parameters to the training dataset and assessed its accuracy via leave-one out cross-validation. We further compared our model to the local effect model (LEM) and the microdosimetric kinetic model (MKM) by comparing its predictions against published predictions made with those models for clinically relevant LET values in the range of 23-107 keVm.Our model predicted C-ion RBE within ±7%-15% depending on cell line and dose which was comparable to LEM and MKM for the same conditions.Our model offers comparable accuracy to the LEM or MKM but requires fewer input parameters and is less computationally expensive and whose implementation is so simple we provide it coded into a spreadsheet. Thus, our model can serve as a pragmatic alternative to these mechanistic models in cases where cell-specific input parameters cannot be obtained, the models cannot be implemented, or for which their computational efficiency is paramount.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632915PMC
http://dx.doi.org/10.1088/1361-6560/ad918eDOI Listing

Publication Analysis

Top Keywords

model
9
empirical model
8
relative biological
8
biological effectiveness
8
free parameters
8
lem mkm
8
input parameters
8
parameters
7
model carbon-ion
4
carbon-ion relative
4

Similar Publications

In light of the Chinese government's dual carbon goals, achieving cleaner production activities has become a central focus, with regional environmental collaborative governance, including the management of agricultural carbon reduction, emerging as a mainstream approach. This study examines 268 prefecture-level cities in China, measuring the carbon emission efficiency of city agriculture from 2001 to 2022. By integrating social network analysis and a modified gravity model, the study reveals the characteristics of the spatial association network of city agricultural carbon emission efficiency in China.

View Article and Find Full Text PDF

Stroke is one of the leading causes of death in developing countries, and China bears the largest global burden of stroke. This study aims to investigate the relationship between different dimensions of physical activity levels and stroke risk using a nationally representative database. We performed a cross-sectional analysis using data from the China Health and Retirement Longitudinal Study (CHARLS) 2020.

View Article and Find Full Text PDF

Analyzing microbial samples remains computationally challenging due to their diversity and complexity. The lack of robust de novo protein function prediction methods exacerbates the difficulty in deriving functional insights from these samples. Traditional prediction methods, dependent on homology and sequence similarity, often fail to predict functions for novel proteins and proteins without known homologs.

View Article and Find Full Text PDF

Online vibration state identification of multi-rigid-body system based on self-healing model.

Sci Rep

December 2024

School of Mechanical Engineering, Liaoning Engineering Vocational College, Tieling, 112008, Liaoning, People's Republic of China.

The paper proposes a multi-rigid-body system state identification method based on self-healing model in order to improve the accuracy and reliability of CNC machine tools. Firstly, considering the influence of the joint surface, the Lagrange method is used to establish the mechanical model of the multi-rigid-body system. We input acceleration information and use the second-order modulation function to complete the online real-time identification of the joint surface parameters, thereby establishing the self-healing mechanical model of the multi-rigid-body system.

View Article and Find Full Text PDF

The intelligent identification of wear particles in ferrography is a critical bottleneck that hampers the development and widespread adoption of ferrography technology. To address challenges such as false detection, missed detection of small wear particles, difficulty in distinguishing overlapping and similar abrasions, and handling complex image backgrounds, this paper proposes an algorithm called TCBGY-Net for detecting wear particles in ferrography images. The proposed TCBGY-Net uses YOLOv5s as the backbone network, which is enhanced with several advanced modules to improve detection performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!