Medicago sativa L. is gaining attention as a sustainable plant-based food protein. Alfalfa saponins (ASs) typically exist in a glycosylated form in nature, which has poor cell membrane permeability, while the deglycosylated saponins may show better bioactivity. The AS was deglycosylated by β-glucosidase from Aspergillus niger, and the chemical structures and biological activities, including in vivo assays, of AS and deglycosylated AS (DAS) were determined. The results showed that the half maximal inhibitory concentration for 2,2-diphenyl-1-picrylhydrazyl inhibition of DAS was 29.5 µg/mL, demonstrating a significantly higher reducing capacity compared to AS (p < 0.05). The DAS induced 33.8% antibacterial activity against Escherichia coli and enhanced the proliferation of human airway epithelial cells (BEAS-2B) at a concentration of 125 µg/mL. In vivo experiments on C57BL/6 mice fed a high-fat diet demonstrated that high-level DAS treatment produced significantly greater hypolipidemic effects compared to AS (p < 0.05). Thus, the AS can be deglycosylated, which leads to an improvement in biological activity, particularly since the DAS exhibits significantly enhanced hypolipidemic activity. PRACTICAL APPLICATION: Alfalfa saponins were deglycosylated by β-glucosidase from Aspergillus niger, which contributed to increased bioactivity, particularly its hypolipidemic activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1750-3841.17523 | DOI Listing |
J Environ Manage
January 2025
Tshwane University of Technology, Department of Chemistry, Private Bag X680, Pretoria, 0001, South Africa.
Landfilling is common in developing countries since it is the easiest and cheapest way of waste disposal, however, it leads to serious environmental problems such as soil, water, and air pollution. A landfill has a life span of fifteen years after which it is closed leaving the site unusable, as a result, effective methods are needed for restoring and reclaiming the closed landfill site for future use. Phytoremediation has emerged as a viable and environmentally friendly method, which uses green plants to remove pollutants from soil, air, and water.
View Article and Find Full Text PDFFront Plant Sci
December 2024
College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China.
Considerable biological decline of continuously cropped alfalfa may be tightly linked to rhizosphere metabolism. However, plant-soil feedbacks and age-related metabolic changes in alfalfa stands remain unexplored. The aim of this study was to identify the linkages of rhizosphere and root metabolites, particularly autotoxins and prebiotics, to alfalfa decline under continuous cropping.
View Article and Find Full Text PDFJ Food Sci
December 2024
College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
Nanomedicine (Lond)
October 2024
Tianjin Key Laboratory of Organ Injury and ITCWM Repair Associated with Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China.
To evaluate the anti-pancreatic cancer effect of novel Tubeimoside I multifunctional liposomes combined with gemcitabine. Liposomes were prepared through the thin film hydration method, with evaluations conducted on parameters including encapsulation efficiency (EE%), particle size, polydispersity index (PDI), zeta potential (ZP), storage stability, and release over a 7-day period. The cellular uptake rate, therapeutic efficacy and and the role of immune microenvironment modulation were evaluated.
View Article and Find Full Text PDFJ Anim Sci
January 2024
Department of Bachelor's Degree Program for Indigenous Peoples in Senior Health and Care Management, National Taitung University, Taitung, Taiwan.
The issue of global warming, primarily fueled by anthropogenic greenhouse gas emissions, necessitates effective strategies to address methane (CH4) emissions from both ruminants and nonruminants. Drawing inspiration from successful approaches employed in ruminants, this study evaluates the impact of supplementing the diets of Taiwan's native black-feathered chickens with alfalfa meal and sorghum distillery residues (SDRs) on CH4 emissions. Using a respiration chamber the results reveal a significant reduction in CH4 emissions when incorporating either 30% alfalfa meal or 30% SDRs into the chicken diet, demonstrating a 59% and 49% decrease, respectively, compared to the control group (P < 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!