Toward an Enhanced Hydrophilic TiO Nanoparticles Adsorption at Air-Liquid Interface Through Ion Regulation.

Langmuir

International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

Published: November 2024

AI Article Synopsis

  • * It investigates how adding NaCl affects the surface charge of TiO particles, which in turn influences their ability to adsorb at the interface.
  • * Findings show that while low NaCl concentrations boost particle activity and interfacial density, higher concentrations ultimately reduce packing density due to increased contact angle and surface area interactions.

Article Abstract

This study investigates the dynamic properties of air-liquid interfacial tension for hydrophilic TiO P25 utilizing the pendant drop method. Additionally, it examines the interfacial adsorption mechanism of hydrophilic TiO particles, considering the characteristics of particle surface charge distribution in relation to ion regulation to enhance particle interface adsorption. Experimental results reveal that in the absence of ion addition, the TiO P25 suspension system exhibits limited interfacial adsorption due to its superhydrophilicity, regardless of particle concentration. The addition of NaCl increases the surface charge density of the particles, strengthens the electrostatic attraction between particles and the interface, and enhances particle adsorption. Specifically, at a low NaCl concentration (0.01 wt %), the increased surface charge density and contact angle of the particles elevate particle activity and high interfacial packing density. At a higher NaCl concentration (0.1 wt %), while NaCl further increases the particle contact angle, the increased effective cross-sectional area of the air-liquid interface occupied by individual particles leads to a reduction in surface free energy. Despite the enhanced electrostatic attraction, this results in a lower packing density.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c02914DOI Listing

Publication Analysis

Top Keywords

hydrophilic tio
12
surface charge
12
air-liquid interface
8
ion regulation
8
tio p25
8
interfacial adsorption
8
nacl increases
8
charge density
8
electrostatic attraction
8
nacl concentration
8

Similar Publications

The present study aims to analyze the thermal regulation of the Ce/Ce ratio on the nanonetwork titania layer over the titanium (Ti) surface developed by the alkali-mediated surface modification approach. The effect of sequential heat treatment from 200 to 800 °C was evaluated for its surface characteristics such as morphology, phase formation, roughness, hardness, hydrophilicity, etc. Surface oxidation by temperatures up to 600 °C demonstrated a progressive increase in the Ce (CeO) content with a rutile TiO network layer over the Ti surface.

View Article and Find Full Text PDF

Purpose: SLM 3D printing technology is one of the most widely used implant-making technologies. However, the surfaces of the implants are relatively rough, and bacteria can easily adhere to them; increasing the risk of postoperative infection. Therefore, we prepared a near-infrared photoresponsive nano-TiO coating on the surface of an SLM 3D-printed titanium alloy sheet (Ti6Al4V) via a hydrothermal method to evaluate its antibacterial properties and biocompatibility.

View Article and Find Full Text PDF

Facile Preparation of Sulfonated Polysulfone Composite Membranes with High Hydrophilicity and Visible-Light Driving Self-Cleaning Performance.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China.

The photo-Fenton reaction can efficiently degrade organic pollutants and thus is applied intensively for clearing out membrane fouling. However, the pollutant removal efficiency is greatly limited by the redox cycle rate of Fe/Fe and the rapid recombination rate of the photogenerated electrons and holes. In order to overcome these drawbacks, a sulfonated polysulfone composite membrane was designed and prepared by incorporating titanium dioxide (TiO) nanoparticles into a sulfonated polysulfone membrane and sequentially forming β-FeOOHs on the membrane surface.

View Article and Find Full Text PDF

Super hydrophilic and super oleophobic carbon nanotube/TiO composite membranes for efficient separation of algal-derived oil/water emulsions.

Colloids Surf B Biointerfaces

December 2024

Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.

The separation of oil from microalgae aqueous emulsions is a critical step in producing algal-derived biofuels and nutraceuticals. This study presents the development of super hydrophilic and super oleophobic composite membranes to efficiently separate algal oil from oil/water emulsions. Carbon nanotubes (CNTs) were functionalized with polydopamine (PDA), polyethylene glycol (PEG), and titanium dioxide (TiO) nanoparticles and coated onto a mixed cellulose ester (MCE) substrate to fabricate the composite membranes.

View Article and Find Full Text PDF

Facile Formation of Durable SiO-TiO Coatings on Plastic Films for Self-Cleaning and Antifogging.

ACS Appl Mater Interfaces

January 2025

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.

Surface fogging affects the light transmittance of various transparent materials and poses potential safety hazards. Superhydrophilic TiO surfaces can effectively prevent fogging by promoting continuous water film formation; however, they often struggle to maintain stable hydrophilicity and adhesion on plastic films. Self-cleaning and antifogging coatings on plastic substrates are crucial for applications requiring long-term clarity and minimal maintenance costs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!