Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Micro-sized silicon is a promising anode material due to its high theoretical capacity and low cost. However, its bulk particle size poses a challenge during electrochemical cycling, and the long ion/electron transport paths within it limit the rate capability. Herein, we propose a structural engineering approach for establishing a well-defined three-dimensional (3D) micro-sized silicon/carbon matrix to achieve efficient omnidirectional ionic and electronic conductivity within micro-sized silicon and effectively mitigate the volume changes. The prepared materials, comprising ordered two-dimensional porous silicon nanosheets, offer direct two-dimensional electrolyte transport channels aligned parallel to the layer plane and porous channels oriented perpendicular to the layer plane. These well-defined omnidirectional pathways enable more efficient electrolyte mass transport than the disordered paths within the traditional 3D porous silicon anodes. A robust carbon shell, securely bonded to silicon through dual covalent bonding, effectively shields these pathways, buffering the volume changes and offering an electronically conductive 3D carbon network.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nh00349g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!