Constructing van der Waals materials with spontaneous out-of-plane polarization through interlayer engineering expands the family of two-dimensional ferroelectrics and provides an excellent platform for enhancing the photoelectric conversion efficiency. Here, we reveal the effect of spontaneous polarization on ultrafast carrier dynamics in rhombohedral stacked bilayer WSe. Using precise stacking techniques, a 3R WSe-based vertical heterojunction was successfully constructed and confirmed by polarization-resolved second harmonic generation measurements. Through output characteristics and the scanning photocurrent map under zero bias, we reveal a non-zero short-circuit current in the graphene/3R WSe/graphene heterojunction region, demonstrating the bulk photovoltaic effect. Furthermore, the out-of-plane polarization enables the 3R WSe heterojunction region to achieve an ultrafast intrinsic photoresponse time of approximately 3 ps. The ultrafast response time remains consistent across varying detection powers, demonstrating environmental stability and highlighting the potential in optoelectronic applications. Our study presents an effective strategy for enhancing the response time of photodetectors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552432 | PMC |
http://dx.doi.org/10.3762/bjnano.15.109 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Science and Environment, Roskilde University, Universitetsvej 1, P.O. Box 260, DK-4000 Roskilde, Denmark. Electronic address:
The IR polarization spectrum of acetylacetone enol (AAe, (3Z)-4-hydroxy-3-penten-2-one) was recorded in the region 2000 - 450 cm using stretched polyethylene as an anisotropic solvent. The measured orientation factors were consistent with C molecular symmetry of AAe and provided an experimental distinction between in-plane and out-of-plane polarized spectral features. The results suggest the assignment of at least one previously unrecognized fundamental transition.
View Article and Find Full Text PDFNano Lett
December 2024
Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077 Toulouse, France.
When two BN layers are stacked in parallel in an AB or BA arrangement, a spontaneous out-of-plane electric polarization arises due to charge transfer in the out-of-plane B-N bonds. The ferroelectric switching from AB to BA (or BA to AB) can be achieved with a relatively small out-of-plane electric field through the in-plane sliding of one atomic layer over the other. However, the optical detection of such ferroelectric switching in hBN has not yet been demonstrated.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
Flexoelectric coefficient is a tetradic and its introduction enables centrosymmetric materials to exhibit piezoelectricity. However, the flexoelectric paradigm currently lacks a strategy to effectively tune the strain gradient for optimal electro-mechanical coupling. This study proposes a quantized collision model accessible through ionic irradiation technology to explore the flexoelectricity and precisely modulate the strain gradient.
View Article and Find Full Text PDFAdv Mater
December 2024
Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, P. R. China.
Bulk photovoltaic effect (BPVE) can break the Shockley-Queisser limit by leveraging the inherent asymmetry of crystal lattice without a junction. However, this effect is mainly confined to UV-vis spectrum due to the wide-bandgap nature of traditional ferroelectric materials, thereby limiting the exploration of the infrared light-driven efficient BPVE. Herein, giant two-photon absorption (TPA) driven BPVE is uncovered from visible to infrared in ferroelectric α-InSe utilizing wavelength-tunable terahertz (THz) emission spectroscopy.
View Article and Find Full Text PDFSmall
December 2024
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Ferroelectricity in two-dimensional (2D) materials at room temperature has attracted significant interest due to their substantial potential for applications in non-volatile memory, nanoelectronics, and optoelectronics. The intrinsic tendency of 2D materials toward nonstoichiometry results in atomic configurations that differ from those of their stoichiometric counterparts, thereby giving rise to potential ferroelectric polarization properties. However, reports on the emergence of room temperature ferroelectric effects in nonstoichiometric 2D materials remain limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!