The superconducting properties of 85 nm thick hafnium thin films with a 5 nm thick titanium layer on top have been investigated for three different geometries, that is, a film covering the entire 7 × 7 mm chip surface, bridges with a width of 200 μm and length up to 1800 μm, and bridges in the form of squares with sides from 100 to 1000 μm. The bridges were formed by a photolithographic lift-off process and are intended to be used as the main sensing element of a microcalorimeter based on a transition-edge sensor (TES) in experiments to determine the magnetic moment of neutrinos. Based on the measurements of the critical current, the critical temperature, and the width of the superconducting transition, we estimate the energy resolution δ of the TES prototypes, showing that it is possible to fabricate microcalorimeters with δ less than 1 eV using these films.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552410 | PMC |
http://dx.doi.org/10.3762/bjnano.15.108 | DOI Listing |
J Low Temp Phys
May 2024
Department of Physics, Princeton University, Princeton, 08540 NJ USA.
The Simons Observatory (SO) is a cosmic microwave background instrumentation suite in the Atacama Desert of Chile. More than 65,000 polarization-sensitive transition-edge sensor (TES) bolometers will be fielded in the frequency range spanning 27 to 280 GHz, with three separate dichroic designs. The mid-frequency 90/150 GHz and ultra-high-frequency 220/280 GHz detector arrays, fabricated at NIST, account for 39 of 49 total detector modules and implement the feedhorn-fed orthomode transducer-coupled TES bolometer architecture.
View Article and Find Full Text PDFNanoscale Adv
November 2024
School of Physical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute Jatni-752050 Odisha India
Comput Softw Big Sci
May 2024
Institut für Hochenergiephysik, Österreichischen Akademie der Wissenschaften, Nikolsdorfer Gasse 18, 1050 Wien, Austria.
Cryogenic phonon detectors with transition-edge sensors achieve the best sensitivity to sub-GeV/c dark matter interactions with nuclei in current direct detection experiments. In such devices, the temperature of the thermometer and the bias current in its readout circuit need careful optimization to achieve optimal detector performance. This task is not trivial and is typically done manually by an expert.
View Article and Find Full Text PDFBeilstein J Nanotechnol
November 2024
Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Minin Street, 24, Nizhny Novgorod, Russia, 603155, Russia.
The superconducting properties of 85 nm thick hafnium thin films with a 5 nm thick titanium layer on top have been investigated for three different geometries, that is, a film covering the entire 7 × 7 mm chip surface, bridges with a width of 200 μm and length up to 1800 μm, and bridges in the form of squares with sides from 100 to 1000 μm. The bridges were formed by a photolithographic lift-off process and are intended to be used as the main sensing element of a microcalorimeter based on a transition-edge sensor (TES) in experiments to determine the magnetic moment of neutrinos. Based on the measurements of the critical current, the critical temperature, and the width of the superconducting transition, we estimate the energy resolution δ of the TES prototypes, showing that it is possible to fabricate microcalorimeters with δ less than 1 eV using these films.
View Article and Find Full Text PDFSingle-photon detectors based on the superconducting transition-edge sensor are used in a number of visible to near-infrared applications, particularly for photon-number-resolving measurements in quantum information science. To be practical for large-scale spectroscopic imaging or photonic quantum computing applications, the size of visible to near-infrared transition-edge sensor arrays and their associated readouts must be increased from a few pixels to many thousands. In this manuscript, we introduce the kinetic inductance current sensor, a scalable readout technology that exploits the nonlinear kinetic inductance in a superconducting resonator to make sensitive current measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!