A global trend for the development of energetic materials using various sources is promoted by researchers annually. Solid bituminous hydrocarbons can play a key role in carbon science as abundant, low-cost, and mineral carbonaceous substrates. This study focuses on the design and synthesis of a series of new energetic materials from natural asphalt (NA), petroleum pitch (PP) and petroleum bitumen (PB) as industrial and available solid bituminous hydrocarbons. Energetic materials NA-NO, PP-NO and PB-NO were synthesized through the nitrification reaction. The heat of combustion, thermal behaviors and FTIR, elemental, BET, UV-vis, SEM, EDX-map, AFM, GC-MS and TG-DSC analyses were applied to identify and confirm that all were prepared successfully. Further, the physicochemical and energy properties of NA-NO, PP-NO and PB-NO were calculated using EMDB V 1.0 software. Thermal analysis showed thermal stability and insensitivity of NA-NO, PP-NO and PB-NO toward mechanical stimuli. The combustion heats of NA-NO, PP-NO and PB-NO were measured using a calorimeter bomb the ASTM D240 method and evolved high amounts of energy of 23 500, 23 450 and 23 360 kJ kg, respectively. The density of NA-NO was measured using the ASTM-D8176 test and confirmed to be 0.5 g cm, which can be considered the lightest energetic material. Based on the conducted studies and analyses, new energetic materials synthesized based on solid bituminous hydrocarbons are classified as first-generation energetic materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551920PMC
http://dx.doi.org/10.1039/d4ra06329eDOI Listing

Publication Analysis

Top Keywords

energetic materials
24
solid bituminous
16
bituminous hydrocarbons
16
na-no pp-no
16
pp-no pb-no
16
energetic
7
materials
6
na-no
5
synthesis new-type
4
new-type cost-effective
4

Similar Publications

Context: DNAN/DNB cocrystals, as a newly developed type of energetic material, possess superior safety and thermal stability, making them a suitable alternative to traditional melt-cast explosives. Nonetheless, an exploration of the thermal degradation dynamics of the said cocrystal composite has heretofore remained uncharted. Consequently, we engaged the ReaxFF/lg force field modality to delve into the thermal dissociation processes of the DNAN/DNB cocrystal assembly across a spectrum of temperatures, encompassing 2500, 2750, 3000, 3250, and 3500 K.

View Article and Find Full Text PDF

Neuronal Plasma Membranes as Supramolecular Assemblies for Biological Memory.

Langmuir

January 2025

Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, United States.

Biological memory is the ability to develop, retain, and retrieve information over time. Currently, it is widely accepted that memories are stored in synapses (i.e.

View Article and Find Full Text PDF

Saturn's rings have been estimated to be as young as about 100 to 400 million years old according to the hypothesis that non-icy micrometeoroid bombardment acts to darken the rings over time and the Cassini observation indicated that the ring particles appear to be relatively clean. These young age estimates assume that the rings formed out of pure water ice particles with a high accretion efficiency of impacting non-icy micrometeoroid material ( ≳ 10%). Here we show, using numerical simulations of hypervelocity micrometeoroid impacts on a ring particle, that non-icy material may not be as readily accreted as previously thought.

View Article and Find Full Text PDF

In this work, two energetic compounds 5-(3-iminio-6-nitro-3H-[1,2,4]triazolo[4,3-][1,2,4]triazol-2(7)-yl)tetrazol-1-ide () and 3-nitro-7-(2-tetrazol-5-yl)-7-[1,2,4]triazolo[4,3-][1,2,4]triazol-6-amine () were successfully synthesized from the same compound 3,6,7-triamino-7-[1,2,4]triazolo[4,3-][1,2,4]triazolium (). Both compounds contain three explosophores, amino, nitro, and tetrazole, on the fused ring. Through different functional group arrangements, possesses higher density and good thermal stability.

View Article and Find Full Text PDF

Determination of Site Occupancy in the M-Pd-Zn (M = Cu, Ag, and Au) γ-Brass Phase by CALculation of PHAse Diagrams Modeling and Rietveld Refinement.

Inorg Chem

January 2025

Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

The Pd-Zn γ-brass phase provides exciting opportunities for synthesizing site-isolated catalysts with precisely controlled Pd active site ensembles. Introducing a third metallic element into the γ-brass lattice further perturbs the catalytic active site ensembles. Here, we introduce coinage metallic elements M (M = Cu, Ag, and Au) into the Pd-Zn γ-brass phase and investigate the site occupation factors of each element in the γ-brass lattice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!