An imaging scheme to study the flow dynamics of co-flow regimes in microfluidics: implications for nanoprecipitation.

Lab Chip

Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland.

Published: December 2024

Co-flow microfluidics, in addition to its applications in droplet generation, has gained popularity for use with miscible solvent systems (continuous microfluidics). By leveraging the short diffusional distances in miniature devices, processes like nanomaterial synthesis can be precisely tailored for high-throughput production. In this context, the manipulation of flow regimes-from laminar to vortex formation, as well as the generation of turbulent and turbulent jet flows-plays a significant role in optimizing these processes. Therefore, a detailed understanding of fluid interactions within microchannels is crucial. Imaging with tracer particles is a commonly used approach to study fluid behavior. Alternatively, label-free imaging methodologies are rarely employed for studying fluid dynamics. In this pursuit, we present a new imaging-based scheme to explore fluid interactions in various co-flow regimes through optical flow analysis, specifically using Gaussian window mean squared error (MSE). By examining fluid flow characteristics such as flow intensities (caused by fluctuations) and the projected movement of fluid spots, we characterize slow vortexing and chaotic flow behaviors in co-flow regimes. Consequently, we use imaging data to illustrate the influence of co-flow regimes on particle synthesis. This new tool provides the scientific community with an innovative method to study fluid interactions, which can be further explored to develop a more effective understanding of fluid mixing and optimize fluid manipulation in microfluidic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4lc00652fDOI Listing

Publication Analysis

Top Keywords

co-flow regimes
16
fluid interactions
12
fluid
9
understanding fluid
8
study fluid
8
flow
6
co-flow
5
imaging
4
imaging scheme
4
scheme study
4

Similar Publications

Investigation and insights on the on-demand generation of monodispersed emulsion droplets from a floating capillary-based open microfluidic device.

J Chem Phys

November 2024

Joint Laboratory of Optofluidic Technology and Systems, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.

Article Synopsis
  • This study presents a new method for creating uniform droplets in the picoliter to nanoliter range, crucial for effective microreactors in chemical and biomedical applications.
  • A floating capillary-based open microfluidic device (FCOMD) is introduced, utilizing an angled capillary to control droplet formation by adjusting specific parameters.
  • The FCOMD significantly increases droplet production efficiency compared to traditional methods, enabling the creation of various types of droplets and highlighting its potential use across diverse industries like materials science, food, and pharmaceuticals.
View Article and Find Full Text PDF

An imaging scheme to study the flow dynamics of co-flow regimes in microfluidics: implications for nanoprecipitation.

Lab Chip

December 2024

Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland.

Co-flow microfluidics, in addition to its applications in droplet generation, has gained popularity for use with miscible solvent systems (continuous microfluidics). By leveraging the short diffusional distances in miniature devices, processes like nanomaterial synthesis can be precisely tailored for high-throughput production. In this context, the manipulation of flow regimes-from laminar to vortex formation, as well as the generation of turbulent and turbulent jet flows-plays a significant role in optimizing these processes.

View Article and Find Full Text PDF

Microfluidic Droplet-Generation Device with Flexible Walls.

Micromachines (Basel)

September 2023

Department of Mechanical Engineering, York University, Toronto, ON M3J 1P3, Canada.

Controlling droplet sizes is one of the most important aspects of droplet generators used in biomedical research, drug discovery, high-throughput screening, and emulsion manufacturing applications. This is usually achieved by using multiple devices that are restricted in their range of generated droplet sizes. In this paper, a co-flow microfluidic droplet-generation device with flexible walls was developed such that the width of the continuous (C)-phase channel around the dispersed (D)-phase droplet-generating needle can be adjusted on demand.

View Article and Find Full Text PDF

Encapsulation of Cadmium-Free InP/ZnSe/ZnS Quantum Dots in Poly(LMA-co-EGDMA) Microparticles via Co-flow Droplet Microfluidics.

Small Methods

July 2023

Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium.

Quantum dots (QDs) are semiconductor nanocrystals that are used in optoelectronic applications. Most modern QDs are based on toxic metals, for example Cd, and do not comply with the European Restriction of Hazardous Substances regulation of the European Union. Latest promising developments focus on safer QD alternatives based on elements from the III-V group.

View Article and Find Full Text PDF

Core/shell microdroplets formation with uniform size is investigated numerically in the co-flow microchannel. The interface and volume fraction contour between three immiscible fluids are captured using a ternary phase-field model. Previous research has shown that the effective parameters of microdroplet size are the physical properties and velocity of the three phases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!