Accurate, effective, and continuous monitoring of pressure, moisture, and temperature is essential for routine health assessments and professional patient care. In this study, we present a fully integrated multiparameter passive wireless sensor (MWS) that employs a mechanical-electrical dual-gradient structure design. The unique gradient porous structure endows the MWS with significant advantages in terms of detection dimensions (pressure, moisture, and temperature), sensitivity, and stability. Compared to single mechanical gradient designs, the sensor demonstrates 2.6 times higher pressure sensitivity and a 5-tier moisture detection capability. By bridging the technology gap between high-precision multiparameter sensing, wireless communication, and energy management, the MWS is capable of measuring multiple physiological parameters, including breath, ballistocardiograph, moisture, and temperature at multiple points, providing real-time assessments of the physiological state of the subjects. This work offers valuable quantitative insights for caregivers and paves the way for significant advancements in personal healthcare management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c04215 | DOI Listing |
Sci Rep
January 2025
School of Highway, Chang'an University, Xi'an, 710064, Shaanxi, China.
Temperature is a critical factor affecting the matric suction of unsaturated soils. This study employed a simple and time-saving method to investigate the influences of temperature and moisture content on the temperature dependence of matric suction in loess and sand soils. Based on experimental data, the fitting performance of three data-fitting models-Brooks-Corey, van Genuchten, and Fredlund-Xing -was evaluated at temperatures above 0 °C.
View Article and Find Full Text PDFBMJ Open
January 2025
Clinical Research Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
Introduction: Medicine quality can be influenced by environmental factors. In low- and middle-income countries (LMICs) with tropical climates, storage facilities of medicines in healthcare settings and homes may be suboptimal. However, knowledge of the effects of temperature and other climatic and environmental factors on the quality of medicines is limited.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China. Electronic address:
This work prepared the soy protein isolate (SPI)-beeswax-based bigel loaded with β-carotene, and the effect of printing temperature (PT) on texture regulation was investigated. During printing, increasing PT weakened the rheological properties and printability of ink. However, the mechanical strength and deformation resistance at non-linear regions of products were strengthened after printing.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Population Health Sciences, Duke University, Durham, NC 27708, United States; Duke Cancer Institute, Duke University, Durham, NC 27708, United States.
Radon is a naturally occurring radioactive gas derived from the decay of uranium in the Earth's crust. Radon exposure is the leading cause of lung cancer among non-smokers in the US. Radon infiltrates homes through soil and building foundations.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Environmental Sciences, Tezpur University, Tezpur, India.
This study investigates the seasonal and diurnal variations of soil CO flux (Fc) and the impact of meteorological variables on its dynamics. The study took place in the subtropical forest ecosystem of Kaziranga National Park (KNP), from November 2019 to March 2020. The highest Fc (6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!