A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Clinical values of nuclear morphometric analysis in fibroepithelial lesions. | LitMetric

Clinical values of nuclear morphometric analysis in fibroepithelial lesions.

Breast Cancer Res

Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong SAR.

Published: November 2024

AI Article Synopsis

  • Fibroepithelial lesions (FELs) of the breast vary widely, posing diagnostic challenges due to their overlapping characteristics and subjective assessment methods.
  • A study involving digital nuclear morphometric analysis on 241 phyllodes tumors (PTs) and 59 fibroadenomas (FAs) found significant differences in nuclear features that help in distinguishing between these lesions and predicting their behavior.
  • Results indicated high specificity and sensitivity of the analysis for differentiating FAs from benign PTs and for grading PTs, suggesting that digital morphometric methods could enhance the objectivity and accuracy of FEL diagnosis and prognosis.

Article Abstract

Background: Fibroepithelial lesions (FELs) of the breast encompass a broad spectrum of lesions, ranging from commonly encountered fibroadenomas (FAs) to rare phyllodes tumors (PTs). Accurately diagnosing and grading these lesions is crucial for making management decisions, but it can be challenging due to their overlapping features and the subjective nature of histological assessment. Here, we evaluated the role of digital nuclear morphometric analysis in FEL diagnosis and prognosis.

Methods: A digital nuclear morphometric analysis was conducted on 241 PTs and 59 FAs. Immunohistochemical staining for cytokeratin and Leukocyte common antigen (LCA) was used to exclude non-stromal components, and nuclear area, perimeters, calipers, circularity, and eccentricity in the stromal cells were quantified with QuPath software. The correlations of these features with FEL diagnosis and prognosis was assessed.

Results: All nuclear features, including area, perimeter, circularity, maximum caliper, minimum caliper and eccentricity, showed significant differences between FAs and benign PTs (p ≤ 0.002). Only nuclear area, perimeter, minimum caliper and eccentricity correlated significantly with PT grading (p ≤ 0.022). For differentiation of FAs from benign PTs, the model integrating all differential nuclear features demonstrated a specificity of 90% and sensitivity of 70%. For PT grading, the nuclear morphometric score showed a specificity of 78% and sensitivity of 96% for distinguishing benign/borderline from malignant PTs. In addition, a relationship of nuclear circularity was found with PT recurrence. The Kaplan-meier analysis, using the best cutoff determined by ROC curve, showed shorter event free survival in benign PTs with high circularity (chi-square = 4.650, p = 0.031).

Conclusions: Our data suggested the digital nuclear morphometric analysis could have potentials to objectively differentiate different FELs and predict PT outcome. These findings could provide the evidence-based data to support the development of deep-learning based algorithm on nuclear morphometrics in FEL diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552124PMC
http://dx.doi.org/10.1186/s13058-024-01912-8DOI Listing

Publication Analysis

Top Keywords

nuclear morphometric
20
morphometric analysis
16
digital nuclear
12
fel diagnosis
12
benign pts
12
nuclear
11
fibroepithelial lesions
8
nuclear area
8
nuclear features
8
area perimeter
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!