Background: The aim of this study was to evaluate the inter-fraction reproducibility and intra-fraction stability of breast radiotherapy using voluntary deep-inspiration breath hold (DIBH) and free breathing (FB) based on an optical surface imaging system (OSIS).
Methods: Seventeen patients (510 breath-hold sessions) treated using a field-in-field (FiF) technique and twenty patients (600 breath-free sessions) treated with a volume-modulated arc therapy (VMAT) technique were included in this retrospective study. All the patients were positioned with the guidance of CBCT and OSIS, and also monitored with OSIS throughout the whole treatment session. Eight setup variations in three directions were extracted from the treatment reports of OSIS for all sessions and were subsequently manually introduced to treatment plans, resulting in a total of 296 perturbed plans. All perturbed plans were recalculated, and the dose volume histograms (DVH) for the target and organs at risk (OAR) were analyzed.
Results: The OSIS and CBCT for both DIBH and FB treatments showed a good agreement of less than 0.30 cm in each direction. The intra-fraction respiratory motion data during DIBH were -0.06 ± 0.07 cm, 0.12 ± 0.15 cm, and 0.12 ± 0.12 cm in the lateral, longitudinal, and vertical directions, respectively; for FB, the respiratory motion data were -0.02 ± 0.12 cm, 0.08 ± 0.18 cm, and 0.14 ± 0.20 cm, respectively. For the target, DIBH plans were more sensitive to setup errors; the mean deviations in D for CTV were 39.78 Gy-40.17 Gy for DIBH and 38.46 Gy-40.52 Gy for FB, respectively. For the OARs, the mean deviations of V, V, and D to the heart; V, V, and D to the ipsilateral lung; and D to the breast were lower for the FB plan compared with the DIBH plan.
Conclusion: Based on OSIS, our results indicate that both DIBH and FB can provide good reproducibility in the inter-fractions and stability in the intra-fractions. When the patient respiratory motion is large, the FB technology has greater possibility for the undercoverage of the target volume, while DIBH technology is more likely to result in increases in dose to OARs (the lung, heart, and contralateral breast).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556127 | PMC |
http://dx.doi.org/10.1186/s13014-024-02549-9 | DOI Listing |
PLoS One
January 2025
Medical Image Processing Research Group (MIPRG), Dept. of Elect. & Comp. Engineering, COMSATS University Islamabad, Islamabad, Pakistan.
Recovering diagnostic-quality cardiac MR images from highly under-sampled data is a current research focus, particularly in addressing cardiac and respiratory motion. Techniques such as Compressed Sensing (CS) and Parallel Imaging (pMRI) have been proposed to accelerate MRI data acquisition and improve image quality. However, these methods have limitations in high spatial-resolution applications, often resulting in blurring or residual artifacts.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
Purpose: To correct maternal breathing and fetal bulk motion during fetal 4D flow MRI.
Methods: A Doppler-ultrasound fetal cardiac-gated free-running 4D flow acquisition was corrected post hoc for maternal respiratory and fetal bulk motion in separate automated steps, with optional manual intervention to assess and limit fetal motion artifacts. Compressed-sensing reconstruction with a data outlier rejection algorithm was adapted from previous work.
Musculoskeletal Care
March 2025
Department of Health Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.
Background: In order to develop contemporary telehealth curricula for entry-to-practice physiotherapy programs that develop the capabilities required to practice telehealth, it is important to evaluate the delivery of telehealth practices within the physiotherapy profession.
Objective: To assess the current literature to (i) determine what types of assessments and interventions have been delivered via synchronous forms of telehealth (videoconferencing and telephone) by physiotherapists (ii) determine which platforms were used for service delivery and which practice areas have delivered synchronous telehealth physiotherapy assessments and interventions.
Design: Scoping review adhering to Joanna Briggs Institute guidelines.
Med Dosim
January 2025
Department of Central Radiology, Nihon University Itabashi Hospital, Tokyo, Japan.
This study was conducted to evaluate the use of 4-dimensional (4D) maximum intensity projection (4D-MIP) to compensate for the disadvantages of average intensity projection (AIP), which is used to determine the internal target volume (ITV) in lung tumors. A respiratory motion phantom with a simulated tumor was imaged using 4D computed tomography (4D-CT). AIP and 4D-MIP were generated based on 10 phases of 4D-CT, followed by contouring of the ITV and ITV; these were compared with the ITV contoured in 10 phases of 4D-CT (ITV).
View Article and Find Full Text PDFSensors (Basel)
December 2024
Centre for Sleep Medicine Kempenhaeghe, 5590 AB Heeze, The Netherlands.
Continuous respiration monitoring is an important tool in assessing the patient's health and diagnosing pulmonary, cardiovascular, and sleep-related breathing disorders. Various techniques and devices, both contact and contactless, can be used to monitor respiration. Each of these techniques can provide different types of information with varying accuracy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!