A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An interactive dashboard for analyzing user interaction patterns in the i2b2 clinical data warehouse. | LitMetric

Background: Clinical data warehouses provide harmonized access to healthcare data for medical researchers. Informatics for Integrating Biology and the Bedside (i2b2) is a well-established open-source solution with the major benefit that data representations can be tailored to support specific use cases. These data representations can be defined and improved via an iterative approach together with domain experts and the medical researchers using the platform. To facilitate these discussions, it is important to understand how users interact with the system.

Objective: The objective of this work was to develop metrics for describing user interactions with clinical data warehouses in general and i2b2 in particular. Moreover, we aimed to develop a dashboard featuring interactive visualizations that inform data engineers and data stewards about potential improvements.

Methods: We first identified metrics for different data usage dimensions and extracted the relevant metadata about previous user queries from the i2b2 database schema for further analysis. We then implemented associated visualizations in Python and integrated the results into an interactive dashboard using Dash.

Results: The identified categories of metrics include frequency of use, session duration, and use of functionality and features. We created a dashboard that extends our local i2b2 data warehouse platform, focusing on the latter category, further broken down into the number of queries, frequently queried concepts, and query complexity. The implementation is available as open-source software.

Conclusion: A range of metrics can be derived from metadata logged in the i2b2 database schema to provide data engineers and data stewards with a comprehensive understanding of how users interact with the platform. This can help to identify the strengths and limitations of specific instances of the platform for specific use cases and aid their iterative improvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556165PMC
http://dx.doi.org/10.1186/s12911-024-02748-0DOI Listing

Publication Analysis

Top Keywords

data
12
clinical data
12
interactive dashboard
8
data warehouse
8
data warehouses
8
medical researchers
8
data representations
8
specific cases
8
users interact
8
data engineers
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!