The objective of the study is to assess the clinical value of machine learning radiomics based on contrast-enhanced computed tomography (CECT) images in preoperative prediction of perineural invasion (PNI) status in pancreatic ductal adenocarcinoma (PDAC). A total of 143 patients with PDAC were enrolled in this retrospective study (training group, n = 100; test group, n = 43). Radiomics features were extracted from CECT images and selected by the Mann-Whitney U-test, Pearson correlation coefficient, and least absolute shrinkage and selection operator (LASSO). The logistic regression (LR), support vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost), and decision tree (DT) algorithms were trained to build radiomics models by radiomic features. Multivariate logistic regression was employed to identify independent predictors and establish clinical models. A combined model was constructed by integrating clinical and radiomics features. Model performances were assessed by receiver operating characteristic curves (ROCs) and decision curve analyses (DCAs). A total of 788 radiomics features were extracted from CECT images, of which 14 were identified as significant through the three-step selection process. Among the machine learning models, the SVM radiomics model exhibited the highest predictive performance in the test group, achieving an area under the curve (AUC) of 0.831, accuracy of 0.698, sensitivity of 0.677, and specificity of 0.750. After logistic regression screening, the clinical model was established using carbohydrate antigen 19-9 (CA199) levels as one independent predictor. In the test group, the clinical model demonstrated an AUC of 0.644, accuracy of 0.744, sensitivity of 0.871, and specificity of 0.417. The combined model showed improved performance compared to both the clinical and radiomics models in the test group, with an AUC of 0.844, accuracy of 0.767, sensitivity of 0.806, and specificity of 0.667. Subsequently, DCA of the combined model indicated optimal clinical value for predicting PNI status. Machine learning radiomics models can accurately predict PNI status in patients with pancreatic ductal adenocarcinoma. The combined model, which incorporates clinical and radiomics features, enhances preoperative diagnostic performance and aids in the selection of treatment methods.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10278-024-01325-1DOI Listing

Publication Analysis

Top Keywords

machine learning
16
test group
16
radiomics features
16
combined model
16
pancreatic ductal
12
ductal adenocarcinoma
12
learning radiomics
12
cect images
12
pni status
12
logistic regression
12

Similar Publications

A prediction model for electrical strength of gaseous medium based on molecular reactivity descriptors and machine learning method.

J Mol Model

January 2025

Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.

Context: Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength.

View Article and Find Full Text PDF

Predicting fall parameters from infant skull fractures using machine learning.

Biomech Model Mechanobiol

January 2025

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.

When infants are admitted to the hospital with skull fractures, providers must distinguish between cases of accidental and abusive head trauma. Limited information about the incident is available in such cases, and witness statements are not always reliable. In this study, we introduce a novel, data-driven approach to predict fall parameters that lead to skull fractures in infants in order to aid in determinations of abusive head trauma.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Risk-taking is a concerning yet prevalent issue during adolescence and can be life-threatening. Examining its etiological sources and evolving pathways helps inform strategies to mitigate adolescents' risk-taking behavior. Studies have found that unfavorable environmental factors, such as adverse childhood experiences (ACEs), are associated with momentary levels of risk-taking in adolescents, but little is known about whether ACEs shape the developmental trajectory of risk-taking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!