The major genetic risk factor for Alzheimer's disease (AD), APOE4, accelerates beta-amyloid (Aβ) plaque formation, but whether this is caused by APOE expressed in microglia or astrocytes is debated. We express here the human APOE isoforms in astrocytes in an Apoe-deficient AD mouse model. This is not only sufficient to restore the amyloid plaque pathology but also induces the characteristic transcriptional pathological responses in Apoe-deficient microglia surrounding the plaques. We find that both APOE4 and the protective APOE2 from astrocytes increase fibrillar plaque deposition, but differentially affect soluble Aβ aggregates. Microglia and astrocytes show specific alterations in function of APOE genotype expressed in astrocytes. Our experiments indicate a central role of the astrocytes in APOE mediated amyloid plaque pathology and in the induction of associated microglia responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628604 | PMC |
http://dx.doi.org/10.1038/s44321-024-00162-7 | DOI Listing |
CNS Neurol Disord Drug Targets
January 2025
Department of Pharmacy, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad (UP)-244001, India.
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by social communication deficits and repetitive behaviors. Emerging evidence highlights the significant role of glial cells, particularly astrocytes and microglia, in the pathophysiology of ASD. Glial cells are crucial for maintaining homeostasis, modulating synaptic function, and responding to neural injury.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2025
Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
Chronic intermittent hypoxia (CIH), the main feature of obstructive sleep apnea, heightened chemosensory discharges of the carotid body (CB), which contributes to potentiate the ventilatory hypoxic response and elicits hypertension. We aimed to determine: 1) whether the persistence of cardiorespiratory alterations found in long-term CIH depend on the inputs from the CB and, 2) in what extension the activation of glial cells and neuroinflammation in the caudal region of the nucleus of the Solitary Tract (NTS) requires functional CB chemosensory activity. To evaluate these hypotheses, we exposed male mice to CIH for 60 days.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
In multiple sclerosis (MS), microglia and macrophages within the central nervous system (CNS) play an important role in determining the balance among demyelination, neurodegeneration, and myelin repair. Phagocytic and regenerative functions of these CNS innate immune cells support remyelination, whereas chronic and maladaptive inflammatory activation promotes lesion expansion and disability, particularly in the progressive forms of MS. No currently approved drugs convincingly target microglia and macrophages within the CNS, contributing to the lack of therapies aimed at promoting remyelination and slowing disease progression for individuals with MS.
View Article and Find Full Text PDFNutrients
December 2024
Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey.
The brain contains many interconnected and complex cellular and molecular mechanisms. Injury to the brain causes permanent dysfunctions in these mechanisms. So, it continues to be an area where surgical intervention cannot be performed except for the removal of tumors and the repair of some aneurysms.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Anatomy, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
Neuroimmunology is reshaping the understanding of the central nervous system (CNS), revealing it as an active immune organ rather than an isolated structure. This review delves into the unprecedented discoveries transforming the field, including the emerging roles of microglia, astrocytes, and the blood-brain barrier (BBB) in orchestrating neuroimmune dynamics. Highlighting their dual roles in both repair and disease progression, we uncover how these elements contribute to the intricate pathophysiology of neurodegenerative diseases, cerebrovascular conditions, and CNS tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!