AI Article Synopsis

  • Ceramides are important sphingolipids that play a crucial role in managing cellular metabolism, and six specific enzymes (CerS) are responsible for their synthesis.
  • C16 ceramide, linked to obesity and insulin resistance, has CerS6 as a potential drug target due to its specific action in these conditions.
  • New research using cryo-electron microscopy reveals how CerS6 works, showing that it uses a unique reaction mechanism and interacts with substances like the mycotoxin fumonisin B1, paving the way for future drug development.

Article Abstract

Ceramides are bioactive sphingolipids crucial for regulating cellular metabolism. Ceramides and dihydroceramides are synthesized by six ceramide synthase (CerS) enzymes, each with specificity for different acyl-CoA substrates. Ceramide with a 16-carbon acyl chain (C16 ceramide) has been implicated in obesity, insulin resistance and liver disease and the C16 ceramide-synthesizing CerS6 is regarded as an attractive drug target for obesity-associated disease. Despite their importance, the molecular mechanism underlying ceramide synthesis by CerS enzymes remains poorly understood. Here we report cryo-electron microscopy structures of human CerS6, capturing covalent intermediate and product-bound states. These structures, along with biochemical characterization, reveal that CerS catalysis proceeds through a ping-pong reaction mechanism involving a covalent acyl-enzyme intermediate. Notably, the product-bound structure was obtained upon reaction with the mycotoxin fumonisin B1, yielding insights into its inhibition of CerS. These results provide a framework for understanding CerS function, selectivity and inhibition and open routes for future drug discovery.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41594-024-01414-3DOI Listing

Publication Analysis

Top Keywords

ceramide synthase
8
cers enzymes
8
ceramide
5
cers
5
structural basis
4
basis mechanism
4
mechanism inhibition
4
inhibition human
4
human ceramide
4
synthase ceramides
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!