Exploring the impact of lipid stress on sperm cytoskeleton: insights and prospects.

Nat Rev Urol

Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.

Published: November 2024

The decline in male fertility correlates with the global rise in obesity and dyslipidaemia, representing significant public health challenges. High-fat diets induce metabolic alterations, including hypercholesterolaemia, hepatic steatosis and atherosclerosis, with detrimental effects on testicular function. Testicular tissue, critically dependent on lipids for steroidogenesis, is particularly vulnerable to these metabolic disruptions. Excessive lipid accumulation within the testes, including cholesterol, triglycerides and specific fatty acids, disrupts essential sperm production processes such as membrane formation, maturation, energy metabolism and cell signalling. This leads to apoptosis, impaired spermatogenesis, and abnormal sperm morphology and function, ultimately compromising male fertility. During spermiogenesis, round spermatids undergo extensive reorganization, including the formation of the acrosome, manchette and specialized filamentous structures, which are essential for defining the final sperm cell shape. In this Perspective, we examine the impact of high-fat diets on the cytoskeleton of spermatogenic cells and its consequences to identify the mechanisms underlying male infertility associated with dyslipidaemia. Understanding these processes may facilitate the development of therapeutic strategies, such as dietary interventions or natural product supplementation, that aim to address infertility in men with obesity and hypercholesterolaemia. The investigation of cytoskeleton response to lipid stress extends beyond male reproduction, offering insights with broader implications.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41585-024-00952-1DOI Listing

Publication Analysis

Top Keywords

lipid stress
8
male fertility
8
high-fat diets
8
exploring impact
4
impact lipid
4
sperm
4
stress sperm
4
sperm cytoskeleton
4
cytoskeleton insights
4
insights prospects
4

Similar Publications

Effect of plasma free fatty acids on lung function in male COPD patients.

Sci Rep

January 2025

Department of Internal Medicine, Afzalipour Faculty of Medicine, Afzalipour Hospital Research Center, Kerman University of Medical Sciences, Kerman, Iran.

Inflammation and oxidative stress play a pivotal role in COPD pathogenesis. Free fatty acids (FFA) as signaling molecules through a series of G-proteins coupled receptors, play an important role in regulation of the immune system and oxidative stress. For this reason, we decided to investigate the profile of FFA in the plasma in the COPD patients.

View Article and Find Full Text PDF

Efficacy and Safety of Hibiscus sabdariffa in Cardiometabolic Health: An Overview of Reviews and Updated Dose-Response Meta-Analysis.

Complement Ther Med

January 2025

Institute for Studies in Medicine History, Persian and Complementary Medicine, Iran University of Medical Science, Tehran, Iran; Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, Tehran, Iran. Electronic address:

Background: Conventional treatments for cardiometabolic diseases face limitations related to cost, efficacy, and side effects. Hibiscus sabdariffa (HS) is a common food product and a potential alternative. However, previous studies have shown inconsistent results and lacked assessments of result certainty, intervention safety, and subgroup analysis credibility.

View Article and Find Full Text PDF

p-Phenylenediamines (PPDs) are widely used as antioxidants in numerous rubber products to prevent or delay oxidation and corrosion. However, their derived quinones (PPD-Qs), generated through reactions with ozone, are ubiquitous in the environment and raise significant health and toxicity concerns. This review summarizes the current state of knowledge on environmental distribution and fate, human exposure, and biological toxicity of PPDs and PPD-Qs, and makes recommendations for future research directions.

View Article and Find Full Text PDF

Kdm2a inhibition in skeletal muscle improves metabolic flexibility in obesity.

Nat Metab

January 2025

Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, the Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan, China.

Skeletal muscle is a critical organ in maintaining homoeostasis against metabolic stress, and histone post-translational modifications are pivotal in those processes. However, the intricate nature of histone methylation in skeletal muscle and its impact on metabolic homoeostasis have yet to be elucidated. Here, we report that mitochondria-rich slow-twitch myofibers are characterized by significantly higher levels of H3K36me2 along with repressed expression of Kdm2a, an enzyme that specifically catalyses H3K36me2 demethylation.

View Article and Find Full Text PDF

Various practical strategies have been employed to mitigate the detrimental effects of water deficit stress on plants such as application of nano-stimulants. Nanosilicon plays a crucial role in alleviating the deleterious impacts of both abiotic and biotic stresses in plants by modulating various phyto-morphological and physiological processes. This study aimed to examine the combined effects of drought stress and nanosilicon application on the morphological traits and essential oil content and compositions of hemp (Cannabis sativa L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!