This article presents the results of the research on real coal charges of different compositions intended for coking with loading into the chamber by the stamping method. The results of the study established that with an increase in the content of coal at a low stage of metamorphism and a decrease in the content of coal at a high stage of metamorphism in the charges, a decrease in the quality indicators of the coke obtained from them leads to a decrease in the yield of coke. At the same time, there is a gradual decrease in the compaction of the charges from 22.5 to 21.1 kPa; their expansion pressure decreases from 6.8 to 5.9 kPa; and the work of stamping decreases from 8966 to 6822 J. It was also discovered that with the increase in the degree of grinding of the charge, and, accordingly, with the decrease in the average diameter of its particles, the work of stamping coal charges decreases from 7407 to 6238 J. The results can be used in the manufacturing of blast furnace coke by stamping coal charges.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554792 | PMC |
http://dx.doi.org/10.1038/s41598-024-78352-z | DOI Listing |
RSC Adv
January 2025
Institute of Resources and Environmental Engineering, Shanxi University, Shanxi Yellow River Laboratory Taiyuan China
Coal combustion generates soot-type air pollution, and NO, as a typical pollutant, is the main haze-causing pollutant. The degradation of NO by means of photocatalytic superhydrophobic multifunctional coatings is both durable and economical. The precipitation method was employed to create a p-n type BiOBr/α-FeO photocatalytic binary system.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an 710021, China.
This study introduces a novel water-insoluble dispersant for coal water slurry (CWS), namely, a poly(sodium styrene sulfonate)- SiO nanoparticle (SiO--PSSNa). SiO--PSSNa was synthesized by combining the surface acylation reaction with surface-initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS), energy dispersive spectrometer (EDS), nuclear magnetic resonance spectroscopy (NMR) and thermogravimetric analysis (TGA) verified that SiO--PSSNa with the desired structure was successfully obtained.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Energy Research Institute@NTU (ERI@N), Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore639798 ,Singapore.
Understanding the structure-property relationship and the way in which catalysts facilitate polysulfide conversion is crucial for the rational design of lithium-sulfur (Li-S) battery catalysts. Herein, a series of NiAlO, CoAlO, and CuAlO spinel oxides with varying Ni, Co, or Cu tetrahedral and octahedral site occupancy are studied as Li-S battery catalysts. Combined with experimental and theoretical analysis, the tetrahedral site is identified as the most active site for enhancing polysulfide adsorption and charge transfer.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
Elucidating the charging mechanism plays an intrinsic and critical role in the development of high-performance supercapacitors; however, a deep understanding of how this mechanism varies under different charging rates remains challenging. In this study, we investigate the charging mechanism of conductive metal-organic framework (c-MOF) electrodes in ionic liquids, combining electrochemical quartz crystal microbalance and constant-potential molecular dynamics simulations. Both experimental and modeling results reveal a transition of the ion adsorption and desorption modes from anion dominance at low charging rates to ion-exchange governance at high charging rates, significantly reducing the contribution of anions to the capacitance.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
This study introduces the development of a W-M electrochromic film, characterized by a "coral"-like TiO@WO heterostructure, synthesized via a hydrothermal process leveraging the inherent instability of MXene. The film showcases exceptional electrochromic performance, with a coloring response time of 2.8 s, a bleaching response time of 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!