For decades, the synthesis of 2-quinolones, a crucial structural motif in pharmaceuticals and agrochemicals, has relied heavily on costly noble metal complexes and structurally complex ligands. Despite considerable efforts from synthetic chemists, a mild, metal-free, environmentally friendly, and cost-effective approach has remained elusive. This study introduces a robust, metal-free synthetic platform that leverages an innovative organoiodine-catalyzed electrophilic arene C(sp)-H amination strategy to efficiently produce a wide range of new and modifiable 2-quinolones. Moreover, this study allows ready synthetic access to novel 8-aryl-substituted 2-quinolones, uncovering new chemical spaces with significant potential for medicinal applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202403524 | DOI Listing |
Beilstein J Org Chem
December 2024
Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg (UMR 7504), F-67034 Strasbourg, France.
The high potential of non-covalent arene-fluoroarene intermolecular interactions in the design of liquid crystals lies in their ability to strongly promote self-assembly, improve the order and stability of the supramolecular mesophases, and enable tuneability of the optical and electronic properties, which can potentially be exploited for advanced applications in display technologies, photonic devices, sensors, and organic electronics. We recently successfully reported the straightforward synthesis of several mesogens containing four lateral aliphatic chains and derived from the classical triphenylene core self-assembling in columnar mesophases based on this paradigm. These mesogenic compounds were simply obtained in good yields by the nucleophilic substitution (SFAr) of various types of commercially available fluoroarenes with the electrophilic organolithium derivatives 2,2'-dilithio-4,4',5,5'-tetraalkoxy-1,1'-biphenyl (2Li- ).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
The University of Edinburgh School of Chemistry, Chemistry, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Arene borylation reactions provide direct access to aryl organoboranes, including aryl boronic esters. Precious metals, namely Ir, Rh, Pt, remain the go-to for metal-catalysed borylation reactions, however, significant efforts have been expended in developing Earth-abundant metal alternatives. The iron-catalysed borylation of 2-aryl pyridine derivatives with 9-borabicyclo[3.
View Article and Find Full Text PDFAcc Chem Res
December 2024
State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, China.
ConspectusElectrochemistry has been used as a tool to drive chemical reactions for more than two centuries. With the help of an electrode and a power source, chemists are provided with a system whose potential can be precisely dialed in. The theoretically infinite redox range renders electrochemistry capable of oxidizing or reducing some of the most tenacious compounds.
View Article and Find Full Text PDFJ Org Chem
December 2024
Laboratory of organic and metal-organic nitrogen-oxygen systems, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect, 47, Moscow 119991, Russian Federation.
The generation, interconversion, and reactivity of electrophilic species generated upon activation of nitroalkanes with protic acids (the Nef and Meyer reactions) were investigated by quantum-chemical calculations. ,-Bis(hydroxy)iminium (RC═N(OH)) and -oxoiminium (RC═N═O) cations were shown to be produced independently from -nitroalkanes, while -hydroxynitrilium cations (RC≡N-OH) were formed via nearly barrierless C-H bond cleavage in -oxoiminium cations. The -oxoiminium and -hydroxynitrilium cations whose formation is favored under highly acidic anhydrous conditions are strong electrophiles capable of reacting even with nonactivated arenes under ambient conditions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, United States.
We report copper(II) and copper(III) trifluoromethyl complexes supported by a pyridinedicarboxamide ligand (L) as a platform for investigating the role of electron transfer in C(sp)-H trifluoromethylation. While the copper(II) trifluoromethyl complex is unreactive towards (hetero)arenes, the formal copper(III) trifluoromethyl complex performs C(sp)-H trifluoromethylation of a wide range of (hetero)arenes. Mechanistic studies using the copper(III) trifluoromethyl complex suggest that the mechanism of arene trifluoromethylation is substrate-dependent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!