FeNS Single-Atom Sites Anchored on Three-Dimensional Porous Carbon for Highly Efficient and Durable Oxygen Electrocatalysis.

ACS Nano

Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China.

Published: November 2024

Precisely designing asymmetric active centers and exploring their electronic regulation effects to prepare efficient bifunctional single-atom catalysts (SACs) is important for boosting the practical applications of zinc-air batteries (ZABs). Herein, an effective strategy has been developed by introducing an axial S atom to the FeN active center, simultaneously assisted by pyrolyzing the graphene oxide (GO) sheathed zeolitic-imidazolate framework-8 (ZIF8) composite and constructing a three-dimensional (3D) porous framework with abundant FeNS moieties. This structure can accelerate the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics owing to the modulated electronic redistribution and -band center with a reduced energy barrier. The optimal S-Fe-NC/rGO showcases a lower voltage gap (Δ) of 0.64 V between both the ORR and OER half-wave potentials at 10 mA cm, highlighting the excellent bifunctional activities. The assembled S-Fe-NC/rGO rechargeable liquid ZABs deliver a power density of 154.05 mW·cm and a desirable durability of >900 h. More importantly, the corresponding flexible solid-state ZABs exhibit considerable foldability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c15410DOI Listing

Publication Analysis

Top Keywords

three-dimensional porous
8
fens single-atom
4
single-atom sites
4
sites anchored
4
anchored three-dimensional
4
porous carbon
4
carbon highly
4
highly efficient
4
efficient durable
4
durable oxygen
4

Similar Publications

In this work, a series of three-dimensional (3D) SERS substrate were successfully fabricated by assembling silver nanoparticles (AgNPs) onto a porous gelatin sponge (GS) for highly sensitive thiram residues detection in vegetables. These 3D micro-nanostructures could induce the sufficient surface plasmon resonance (SPR) effect of noble metals on their surface and achieve high enrichment of pollutant molecules. As crystal violet (CV) was used as a probe molecule, the lowest CV solution could be detected at 10 M, and the enhancement factor (EF) was calculated to be 9.

View Article and Find Full Text PDF

Hierarchically Porous Polypyrrole Foams Contained Ordered Polypyrrole Nanowire Arrays for Multifunctional Electromagnetic Interference Shielding and Dynamic Infrared Stealth.

Nanomicro Lett

December 2024

School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.

As modern communication and detection technologies advance at a swift pace, multifunctional electromagnetic interference (EMI) shielding materials with active/positive infrared stealth, hydrophobicity, and electric-thermal conversion ability have received extensive attention. Meeting the aforesaid requirements simultaneously remains a huge challenge. In this research, the melamine foam (MF)/polypyrrole (PPy) nanowire arrays (MF@PPy) were fabricated via one-step electrochemical polymerization.

View Article and Find Full Text PDF

Bioaerogels represent a type of three-dimensional porous materials fabricated from natural biopolymers, and show a significant potential for medical application due to their characteristics of extremely low density, high specific surface area, excellent biocompatibility and biodegradability. The preparation method and parameters of bioaerogels are focused on, and their influence on the structure and properties of bioaerogels are discussed in detail. Then, to match the properties of bioaerogels with the medical applications, this work emphasizes the main properties (including biocompatibility, degradability, and mechanical properties), structural parameters (such as suitable porosity, pore size and high specific surface area), and further summarizes the influence of single-component and composite bioaerogels on their properties.

View Article and Find Full Text PDF

Molecular architectures of centrosomes in C. elegans embryos visualized by cryo-electron tomography.

Dev Cell

December 2024

Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Cell Biology and Biophysics Unit, EMBL, 69117 Heidelberg, Germany. Electronic address:

Centrosomes organize microtubules that are essential for mitotic divisions in animal cells. They consist of centrioles surrounded by pericentriolar material (PCM). Questions related to mechanisms of centriole assembly, PCM organization, and spindle microtubule formation remain unanswered, partly due to limited availability of molecular-resolution structural data inside cells.

View Article and Find Full Text PDF

Alpha-fetoprotein (AFP), serves as a reliable and vital biomarker for precise diagnosis and effective monitoring of hepatocellular carcinoma, requires precise detection. Herein, a sandwich-structured electrochemical immunosensor was crafted, employing three-dimensional layered porous carbon modified with gold nanoparticles (Au NPs) as the substrate and Au NPs/CuS as the labeling compound for accurate and sensitive detection of AFP. Due to the effective coordination between the 3D carbon network, Au NPs, and hollow CuS nanocubes, the sandwich-structured electrochemical immunosensor was able to produce three distinct response signals via various detection techniques, demonstrating a broad linear range (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!