A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Baicalin attenuates corticosterone-induced hippocampal neuronal injury by activating mitophagy in an AMPK-dependent manner. | LitMetric

Baicalin attenuates corticosterone-induced hippocampal neuronal injury by activating mitophagy in an AMPK-dependent manner.

Eur J Pharmacol

Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, Henan Province, 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China. Electronic address:

Published: December 2024

Defective mitophagy is closely related to the neuronal dysfunction and major depressive disorder (MDD). Our previous study found that baicalin could enhance nip-like protein (NIX)-mediated mitophagy and exhibit antidepressant effects, and predicted that AMPK may be the pharmacological target of baicalin. However, validated experiments are lacking. In the present study, we first demonstrated the effect of baicalin on hippocampal NIX-mediated mitophagy in CORT-induced depressive mice. Secondly, we transfected siRNA to knockdown AMPK, PGC-1α, and NIX respectively in HT22 cells, and detected the effects of baicalin on mitochondrial function, AMPK/PGC-1α/NIX pathway protein expression and mitophagy levels. Finally, AAV-shAMPKα was injected into hippocampal CA3 to knockdown AMPK in mice to validate the antidepressant effects of baicalin in vivo. The results showed that CORT induced depressive-like behaviors, accompanied with neuronal damage, mitochondrial injury, and inhibited mitophagy in the hippocampus, which were prevented by baicalin (20 mg/kg) treatment. In HT22 cells, baicalin remarkably ameliorated mitochondrial dysfunction and mitophagy disturbance induced by CORT, and these protective effects of baicalin were blocked by knockdown of AMPK, PGC-1α and NIX. Moreover, the beneficial effects of baicalin on depressive-like behaviors and NIX-mediated mitophagy were suppressed by knockdown of AMPKα in mice. Our present results further demonstrated that baicalin promotes NIX-mediated mitophagy and improves depression in an AMPK-dependent manner.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2024.177091DOI Listing

Publication Analysis

Top Keywords

nix-mediated mitophagy
16
effects baicalin
16
knockdown ampk
12
baicalin
11
mitophagy
9
ampk-dependent manner
8
antidepressant effects
8
demonstrated baicalin
8
ampk pgc-1α
8
pgc-1α nix
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!